
Altera Corporation 4–1
May 2006

4. SOPC Builder Components

Introduction This chapter describes in detail what an SOPC Builder component is.
SOPC Builder components are individual design blocks that SOPC
Builder uses to integrate a larger system module. Each component
consists of a structured set of files within a directory.

The files in a component directory serve the following purposes:

■ Defines the hardware interface to the component, such as the names
and types of I/O signals.

■ Declares any parameters that specify the structure of the component
logic and the component interface.

■ Describes a configuration wizard GUI for configuring the
component in SOPC Builder.

■ Provides scripts and other information SOPC Builder needs to
generate the component HDL and integrate the component into the
system module.

■ Contains component-related information, such as software drivers,
necessary for development steps downstream from SOPC Builder.

f For details on creating custom components, see the Developing SOPC
Builder Components chapter in Volume 4 of the Quartus II Handbook. For
details on the SOPC Builder component editor, see the Component Editor
chapter in Volume 4 of the Quartus II Handbook.

Sources of
Components

There are several sources for components, including the following:

■ The Quartus® II software, which includes SOPC Builder, installs a
number of components.

■ Altera® development kits, such as the Nios® II Development Kit,
provide SOPC Builder components as features.

■ Third-party developers provide SOPC Builder Ready components,
including component directories and documentation on how to use
the component.

■ You can package your own HDL files into a new, custom component,
using the SOPC Builder component editor.

1 While it is possible to write component files manually,
Altera strongly recommends you use the SOPC Builder
component editor to create custom components, for reasons
of consistency and forward compatibility.

QII54004-6.0.0

Audio Core for
Altera DE2/DE1 Boards

Preliminary

1 Core Overview

The Audio Core interacts with the Audio CODEC (enCOder/DECoder) on the Altera DE2/DE1
Boards and provides an interface for audio input and output.

2 Functional Description

The Audio Core can support two modes, Audio Input and Audio Output, simultaneously. Figure 1
shows a block diagram for the Audio Core. To guarantee that the left and right audio channels are
synchronized, data will not be play until both channels are received. If only one channel is to be
played, the other channel must have zeros written to it. The audio core contains four FIFOs for the
In and Out audio data, both having the right and left audio channels.

The Audio Core requires certain clock frequencies based on the sample rate of the audio. Another
Altera University Program IP Core named Development Board External Interface can create the
necessary clock signals automatically. Also, the Audio Core requires that audio chip to be initialized
with some default values. Again, another Altera University Program IP Core named Audio/Video
Configuration Core can set the necessary registers in the audio chip automatically. Refer to those
components’ documentation on how to properly instantiate and connect them to a system.

Input

Clock Reset

OutputLeft FIFO

Right FIFO
Serializer

Deserializer
Left FIFO

Right FIFOControl
FIFO Space

Left Data
Right Data

Avalon
Switch

Avalon
Slave
Port

Audio Registers

Fabric

to DAC

from ADC

Figure 1. Block Diagram for Audio Core

Altera Corporation - University Program

October 2006

1

http://www.altera.com/education/univ/unv-index.html

AUDIO CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

3 Instantiating the Core in SOPC Builder

Designers use the Audio Core’s configuration wizard in the SOPC Builder to specify the desired
features.

In the configuration tab, the user can choose the mode of the Audio Core by selecting Audio Out

and/or Audio In. In addition, the Data Width per Channel can be specified. The data widths of 16,
20, 24 and 32 bits are supported.

It is recommended to instantiate the Audio Core with the standard or fast versions of Altera’s Nios®
II processor, so that a program running on the processor can keep up with the generation of audio
data. If the program runs too slowly, the audio may not be clear. If the audio is not clear, it may be
useful to select a lower sampling rate in the audio chip.

4 Software Programming Model

4.1 Register Map

Device drivers control and communicate with the Audio Core through four 32-bit registers. By
writing or reading these registers, data can be fetched from the ADC or sent to the DAC. Table 1
shows the format of the registers.

Table 1. Audio Core Register Map
Offset Register

R/W
Bit Description

in bytes Name 31. . . 24 23. . . 16 15. . . 10 9 8 7. . . 4 3 2 1 0
0 control RW (1) WI RI (1) CW CR WE RE
4 fifospace R WS LC WS RC RA LC RA RC
8 leftdata RW (2) Left Data

12 rightdata RW (2) Right Data

Notes on Table 1:

(1) Reserved. Read values are undefined. Write zero.

(2) Only reads incoming audio data and writes outgoing audio data.

2 Altera Corporation - University Program

October 2006

http://www.altera.com/education/univ/unv-index.html

AUDIO CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.1.1 Control Register

Table 2. Control Register Bits
Bit Number Bit Name Read/Write/Clear Description

0 RE R/W Interrupt-enable bit for read interrupts.
When the RE bit is 1, the Audio Core will
generate an IRQ when both the left and right
channel FIFOs have data available.

1 WE R/W Interrupt-enable bit for write interrupts.
When the WE bit is 1, the Audio Core will
generate an IRQ when both the left and right
channel FIFOs have write space available.

2 CR R/W Clears the Audio Core’s Input FIFOs, when
the bit is 1. Clear remains active until specif-
ically set to zero.

3 CW R/W Clears the Audio Core’s Output FIFOs, when
the bit is 1. Clear remains active until specif-
ically set to zero.

8 RI R Indicates that a read interrupt is pending.
9 WI R Indicates that a write interrupt is pending..

4.1.2 Fifospace Register

The fifospace register fields WSLC (b31−24) and WSRC (b23−16) indicate the number of spaces
available for outgoing data in the left and right channel FIFOs, respectively, while RALC (b15−8)
and RARC (b7−0) indicate the amount of incoming audio data in the left and right channel FIFOs,
respectively.

4.1.3 Leftdata Register

The leftdata register is readable only for Audio In and writable only for Audio Out. It stores the
data coming from or going to the left channel. The data is always flush right, i.e. the LSB of the
data always starts at b0 of the leftdata register.

4.1.4 Rightdata Register

The rightdata register is readable only for Audio In and writable only for Audio Out. It stores the
data coming from or going to the right channel. The data is always flush right, i.e. the LSB of the
data always starts at b0 of the rightdata register.

4.2 Interrupt Behavior

The Audio Core produces a read interrupt when either of the read FIFOs are filled to 75% or more.
Also, It produces the write interrupt when either of the write FIFOs have available space of 75% or
more. The Audio Core generates an interrupt when either of these individual interrupt conditions
are pending and enabled.

Altera Corporation - University Program

October 2006

3

http://www.altera.com/education/univ/unv-index.html

AUDIO CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.3 Programming with the Audio Core

The Audio Core is packaged with C-language functions accessible through the SOPC software de-
velopment kit (SDK) libraries. These functions implement basic operations that users need for the
Audio Core. When using the Altera Debug Client, these functions are automatically provided for
use in a C-language application program, as presented in Section 4.4. To use the functions, the C
code must include the statement:

#include "alt_up_audio.h"

4.4 Audio Core Functions

4.4.1 int alt up audio enable read interrupt ()

Enable the read interrupts for Audio Core.

Returns:

0 for success

4.4.2 int alt up audio disable read interrupt ()

Disable the read interrupts for Audio Core.

Returns:

0 for success

4.4.3 int alt up audio reset audio core ()

Reset the Audio Core by clearing the Incoming and Outgoing FIFOs.

Returns:

0 for success

4.4.4 int alt up audio read left channel (alt u32 ∗ buf, unsigned len)

Read len number of data from the Left Channel Incoming FIFO, and store to where buf points.

Parameters:

buf – the pointer to the allocated memory for storing data

len – the number of data to read

Returns:

the total number of data read

Note:

The function will read the FIFO until len is reached or the FIFO is empty

4 Altera Corporation - University Program

October 2006

http://www.altera.com/education/univ/unv-index.html

AUDIO CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.4.5 int alt up audio read right channel (alt u32 ∗ buf, unsigned len)

Read len number of data from the Right Channel Incoming FIFO, and store to where buf points.

Parameters:

buf – the pointer to the allocated memory for storing data

len – the number of data to read

Returns:

the total number of data read

Note:

The function will read the FIFO until len is reached or the FIFO is empty

4.4.6 int alt up audio write left channel (alt u32 ∗ buf, unsigned len)

Write len number of data from buf to the Left Channel Outgoing FIFO.

Parameters:

buf – the pointer to the data to be written

len – the number of data to be written to the FIFO

Returns:

the total number of data written

Note:

The function will write to the FIFO until len is reached or the FIFO is full

4.4.7 int alt up audio write right channel (alt u32 ∗ buf, unsigned len)

Write len number of data from buf to the Right Channel Outgoing FIFO.

Parameters:

buf – the pointer to the data to be written

len – the number of data to be written to the FIFO

Returns:

the total number of data written

Note:

The function will write to the FIFO until len is reached or the FIFO is full

■

Altera Corporation - University Program

October 2006

5

http://www.altera.com/education/univ/unv-index.html

	1 Core Overview
	2 Functional Description
	3 Instantiating the Core in SOPC Builder
	4 Software Programming Model
	4.1 Register Map
	4.1.1 Control Register
	4.1.2 Fifospace Register
	4.1.3 Leftdata Register
	4.1.4 Rightdata Register

	4.2 Interrupt Behavior
	4.3 Programming with the Audio Core
	4.4 Audio Core Functions
	4.4.1 alt_up_audio_enable_read_interrupt
	4.4.2 alt_up_audio_disable_read_interrupt
	4.4.3 alt_up_audio_reset_audio_core
	4.4.4 alt_up_audio_read_left_channel
	4.4.5 alt_up_audio_read_right_channel
	4.4.6 alt_up_audio_write_left_channel
	4.4.7 alt_up_audio_write_right_channel

