
Altera Corporation 14–1
May 2007

14. Timer Core

Core Overview The timer core with Avalon® interface is a 32-bit interval timer for
Avalon-based processor systems, such as a Nios® II processor system.
The timer provides the following features:

■ Controls to start, stop, and reset the timer
■ Two count modes: count down once and continuous count-down
■ Count-down period register
■ Maskable interrupt request (IRQ) upon reaching zero
■ Optional watchdog timer feature that resets the system if timer ever

reaches zero
■ Optional periodic pulse generator feature that outputs a pulse when

timer reaches zero
■ Compatible with 32-bit and 16-bit processors

Device drivers are provided in the HAL system library for the Nios II
processor. The timer core is SOPC Builder-ready and integrates easily
into any SOPC Builder-generated system. This chapter contains the
following sections:

■ “Functional Description” on page 14–2
■ “Device and Tools Support” on page 14–3
■ “Instantiating the Core in SOPC Builder” on page 14–3
■ “Software Programming Model” on page 14–5

NII51008-7.1.0

14–2 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Functional
Description

Figure 14–1 shows a block diagram of the timer core.

Figure 14–1. Timer Core Block Diagram

The timer core has two user-visible features:

■ The Avalon Memory-Mapped (Avalon-MM) interface that provides
access to six 16-bit registers

■ An optional pulse output that can be used as a periodic pulse
generator

All registers are 16-bits wide, making the timer compatible with both
16-bit and 32-bit processors. Certain registers only exist in hardware for a
given configuration. For example, if the timer is configured with a fixed
period, the period registers do not exist in hardware.

The basic behavior of the timer is described below:

■ An Avalon-MM master peripheral, such as a Nios II processor,
writes the timer core’s control register to:
● Start and stop the timer
● Enable/disable the IRQ
● Specify count-down once or continuous count-down mode

■ A processor reads the status register for information about current
timer activity.

■ A processor can specify the timer period by writing a value to the
period registers, periodl and periodh.

■ An internal counter counts down to zero, and whenever it reaches
zero, it is immediately reloaded from the period registers.

Register File

status

 control

 periodl

snapl

periodh

snaph

IRQ

Address, data,
etc.

Avalon-MM
slave

 interface
to on-chip

logic

Control
Logicresetrequest

(watchdog)

timeout_pulse

Counter

Altera Corporation 14–3
May 2007

Timer Core

■ A processor can read the current counter value by first writing to
either snapl or snaph to request a coherent snapshot of the counter,
and then reading snapl and snaph for the full 32-bit value.

■ When the count reaches zero:
● If IRQs are enabled, an IRQ is generated
● The (optional) pulse-generator output is asserted for one clock

period
● The (optional) watchdog output resets the system

Avalon-MM Slave Interface

The timer core implements a simple Avalon-MM slave interface to
provide access to the register file. The Avalon-MM slave port uses the
resetrequest signal to implement watchdog timer behavior. This
signal is a non-maskable reset signal, and it drives the reset input of all
Avalon-MM peripherals in the SOPC Builder system. When the
resetrequest signal is asserted, it forces any processor connected to
the system to reboot. See “Configuring the Timer as a Watchdog Timer”
on page 14–5 for further details.

Device and
Tools Support

The timer core supports all Altera® FPGA families.

Instantiating the
Core in SOPC
Builder

Designers use the MegaWizard® interface for the timer core in SOPC
Builder to specify the hardware features. This section describes the
options available in the MegaWizard interface.

Timeout Period

The Timeout Period setting determines the initial value of the periodl
and periodh registers. When the Writeable period setting is enabled, a
processor can change the value of the period by writing periodl and
periodh. When Writeable period (see below) is off, the period is fixed
and cannot be updated at runtime.

The Timeout Period setting can be specified in units of usec, msec, sec,
or clocks (number of clock cycles). The actual period achieved depends
on the system clock. If the period is specified in usec, msec or sec, the true
period will be the smallest number of clock cycles that is greater than or
equal to the specified Timeout Period.

14–4 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Hardware Options

The following options affect the hardware structure of the timer core. As
a convenience, the Preset Configurations list offers several pre-defined
hardware configurations, such as:

■ Simple periodic interrupt—This configuration is useful for systems
that require only a periodic IRQ generator. The period is fixed and
the timer cannot be stopped, but the IRQ can be disabled.

■ Full-featured—This configuration is useful for embedded processor
systems that require a timer with variable period that can be started
and stopped under processor control.

■ Watchdog—This configuration is useful for systems that require
watchdog timer to reset the system in the event that the system has
stopped responding. See “Configuring the Timer as a Watchdog
Timer” on page 14–5.

Register Options

Table 14–1 shows the settings that affect the timer core’s registers.

Table 14–1. Register Options

Option Description

Writeable
period

When this option is enabled, a master peripheral can change the count-down period by writing
periodl and periodh. When disabled, the count-down period is fixed at the specified
Timeout Period, and the periodl and periodh registers do not exist in hardware.

Readable
snapshot

When this option is enabled, a master peripheral can read a snapshot of the current count-
down. When disabled, the status of the counter is detectable only via other indicators, such as
the status register or the IRQ signal. In this case, the snapl and snaph registers do not
exist in hardware, and reading these registers produces an undefined value.

Start/Stop
control bits

When this option is enabled, a master peripheral can start and stop the timer by writing the
START and STOP bits in the control register. When disabled, the timer runs continuously.
When the System reset on timeout (watchdog) option is enabled, the START bit is also
present, regardless of the Start/Stop control bits option.

Altera Corporation 14–5
May 2007

Timer Core

Output Signal Options

Table 14–2 shows the settings that affect the timer core’s output signals.

Configuring the Timer as a Watchdog Timer

To configure the timer for use as a watchdog, in the MegaWizard
interface select Watchdog in the Preset Configurations list, or choose the
following settings:

■ Set the Timeout Period to the desired “watchdog” period.
■ Turn off Writeable period.
■ Turn off Readable snapshot.
■ Turn off Start/Stop control bits.
■ Turn off Timeout pulse.
■ Turn on System reset on timeout (watchdog).

A watchdog timer wakes up (i.e., comes out of reset) stopped. A
processor later starts the timer by writing a 1 to the control register’s
START bit. Once started, the timer can never be stopped. If the internal
counter ever reaches zero, the watchdog timer resets the system by
generating a pulse on its resetrequest output. To prevent the system
from resetting, the processor must periodically reset the timer’s count-
down value by writing either the periodl or periodh registers (the
written value is ignored). If the processor fails to access the timer because,
for example, software stopped executing normally, then the watchdog
timer resets the system and returns the system to a defined state.

Software
Programming
Model

The following sections describe the software programming model for the
timer core, including the register map and software declarations to access
the hardware. For Nios II processor users, Altera provides hardware

Table 14–2. Output Signal Options

Option Description

Timeout pulse (1
clock wide)

When this option is enabled, the timer core outputs a signal timeout_pulse. This signal
pulses high for one clock cycle whenever the timer reaches zero. When disabled, the
timeout_pulse signal does not exist.

System reset on
timeout (watchdog)

When this option is enabled, the timer core’s Avalon-MM slave port includes the
resetrequest signal. This signal pulses high for one clock cycle (causing a system-
wide reset) whenever the timer reaches zero. When this option is enabled, the internal
timer is stopped at reset. Explicitly writing the START bit of the control register starts
the timer. When this option is disabled, the resetrequest signal does not exist.
See Configuring the Timer as a Watchdog Timer.

14–6 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

abstraction layer (HAL) system library drivers that enable you to access
the timer core using the HAL application programming interface (API)
functions.

HAL System Library Support

The Altera-provided drivers integrate into the HAL system library for
Nios II systems. When possible, HAL users should access the timer via
the HAL API, rather than accessing the timer registers.

Altera provides a driver for both the HAL timer device models: system
clock timer, and timestamp timer.

System Clock Driver

When configured as the system clock, the timer runs continuously in
periodic mode, using the default period set in SOPC builder. The system
clock services are then run as a part of the interrupt service routine for this
timer. The driver is interrupt-driven, and therefore must have its
interrupt signal connected in the system hardware.

The Nios II integrated development environment (IDE) allows you to
specify system library properties that determine which timer device will
be used as the system clock timer.

Timestamp Driver

The timer core may be used as a timestamp device if it meets the
following conditions:

■ The timer has a writeable period register, as configured in SOPC
Builder.

■ The timer is not selected as the system clock.

The Nios II IDE allows you to specify system library properties that
determine which timer device will be used as the timestamp timer.

If the timer hardware is not configured with writeable period registers,
then calls to the alt_timestamp_start() API function will not reset
the timestamp counter. All other HAL API calls will perform as expected.

f See the Nios II Software Developer’s Handbook for details about using the
system clock and timestamp features that use these drivers. The Nios II
Embedded Design Suite (EDS) also provides several example designs
that use the timer core.

Altera Corporation 14–7
May 2007

Timer Core

Limitations

The HAL driver for the timer core does not support the watchdog reset
feature of the timer core.

Software Files

The timer core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL
drivers. Application developers should not modify these files.

■ altera_avalon_timer_regs.h—This file defines the core’s register
map, providing symbolic constants to access the low-level hardware.

■ altera_avalon_timer.h, altera_avalon_timer_sc.c,
altera_avalon_timer_ts.c, altera_avalon_timer_vars.c—These files
implement the timer device drivers for the HAL system library.

Register Map

A programmer should never have to directly access the timer via its
registers if using the standard features provided in the HAL system
library for the Nios II processor. In general, the register map is only useful
to programmers writing a device driver.

c The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate correctly.

Table 14–3 shows the register map for the timer.

Table 14–3. Register Map

Offset Name R/W
Description of Bits

15 ... 4 3 2 1 0

0 status RW (1) RUN TO

1 control RW (1) STOP START CONT ITO

2 periodl RW Timeout Period – 1 (bits 15..0)

3 periodh RW Timeout Period – 1 (bits 31..16)

4 snapl RW Counter Snapshot (bits 15..0)

5 snaph RW Counter Snapshot (31..16)

Note to Table 14–3:
(1) Reserved. Read values are undefined. Write zero.

14–8 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

status Register

The status register has two defined bits, as shown in Table 14–4.

control Register

The control register has four defined bits, as shown in Table 14–5.

Table 14–4. status Register Bits

Bit Name
Read/
Write/
Clear

Description

0 TO RC The TO (timeout) bit is set to 1 when the internal counter reaches zero. Once
set by a timeout event, the TO bit stays set until explicitly cleared by a master
peripheral. Write zero to the status register to clear the TO bit.

1 RUN R The RUN bit reads as 1 when the internal counter is running; otherwise this bit
reads as 0. The RUN bit is not changed by a write operation to the status
register.

Table 14–5. control Register Bits (Part 1 of 2)

Bit Name
Read/
Write/
Clear

Description

0 ITO RW If the ITO bit is 1, the timer core generates an IRQ when the status
register’s TO bit is 1. When the ITO bit is 0, the timer does not generate
IRQs.

1 CONT RW The CONT (continuous) bit determines how the internal counter behaves
when it reaches zero. If the CONT bit is 1, the counter runs continuously until
it is stopped by the STOP bit. If CONT is 0, the counter stops after it reaches
zero. When the counter reaches zero, it reloads with the 32-bit value stored
in the periodl and periodh registers, regardless of the CONT bit.

2 START (1) W Writing a 1 to the START bit starts the internal counter running (counting
down). The START bit is an event bit that enables the counter when a write
operation is performed. If the timer is stopped, writing a 1 to the START bit
causes the timer to restart counting from the number currently held in its
counter. If the timer is already running, writing a 1 to START has no effect.
Writing 0 to the START bit has no effect.

Altera Corporation 14–9
May 2007

Timer Core

periodl and periodh Registers

The periodl and periodh registers together store the timeout period
value. periodl holds the least-significant 16 bits, and periodh holds
the most-significant 16 bits. The internal counter is loaded with the 32-bit
value stored in periodh and periodl whenever one of the following
occurs:

■ A write operation to either the periodh or periodl register
■ The internal counter reaches 0

The timer’s actual period is one cycle greater than the value stored in
periodh and periodl, because the counter assumes the value zero
(0x00000000) for one clock cycle.

Writing to either periodh or periodl stops the internal counter, except
when the hardware is configured with Start/Stop control bits off. If
Start/Stop control bits is off, writing either register does not stop the
counter. When the hardware is configured with Writeable period
disabled, writing to either periodh or periodl causes the counter to
reset to the fixed Timeout Period specified at system generation time.

snapl and snaph Registers

A master peripheral may request a coherent snapshot of the current 32-bit
internal counter by performing a write operation (write-data ignored) to
either the snapl or snaph registers. When a write occurs, the value of the
counter is copied to snapl and snaph. snapl holds the least-significant
16 bits of the snapshot and snaph holds the most-significant 16 bits. The
snapshot occurs whether or not the counter is running. Requesting a
snapshot does not change the internal counter’s operation.

3 STOP (1) W Writing a 1 to the STOP bit stops the internal counter. The STOP bit is an
event bit that causes the counter to stop when a write operation is
performed. If the timer is already stopped, writing a 1 to STOP has no effect.
Writing a 0 to the stop bit has no effect. Writing 0 to the STOP bit has no
effect.
If the timer hardware is configured with Start/Stop control bits off, writing
the STOP bit has no effect.

Note Table 14–5:
(1) Writing 1 to both START and STOP bits simultaneously produces an undefined result.

Table 14–5. control Register Bits (Part 2 of 2)

Bit Name
Read/
Write/
Clear

Description

14–10 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Interrupt Behavior

The timer core generates an IRQ whenever the internal counter reaches
zero and the ITO bit of the control register is set to 1. Acknowledge the
IRQ in one of two ways:

■ Clear the TO bit of the status register
■ Disable interrupts by clearing the ITO bit of the control register

Failure to acknowledge the IRQ produces an undefined result.

Referenced
Documents

This chapter references the following document:

■ Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 14–11
May 2007

Timer Core

Document
Revision History

Table 14–6 shows the revision history for this chapter.

Table 14–6. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

May 2007
v7.1.0

● Corrected an error: The timer can be used as a timestamp
device if it has a writeable period register.

● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon
technologies. Changed old “Avalon switch fabric” term to
“system interconnect fabric.” Changed old “Avalon interface”
terms to “Avalon Memory-Mapped interface.”

● Added statement that failure to acknowledge an IRQ results
in an undefined result in section “Interrupt Behavior” on
page 12–9.

For the 6.1 release,
Altera released the
Avalon Streaming
interface, which
necessitated some re-
phrasing of existing
Avalon terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

14–12 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

	14. Timer Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Timeout Period
	Hardware Options
	Register Options
	Output Signal Options

	Configuring the Timer as a Watchdog Timer

	Software Programming Model
	HAL System Library Support
	System Clock Driver
	Timestamp Driver
	Limitations

	Software Files
	Register Map
	status Register
	control Register
	periodl and periodh Registers
	snapl and snaph Registers

	Interrupt Behavior

	Referenced Documents
	Document Revision History

