GNUPRO® TooLKIT

User’'s Guide for Altera Nios™

June 2000
Version 1.0

Copyright © 2000 Red Hé&tInc. All rights reserved.

Red Hat®, the Red Hat Shadow Man logo, GNUPro®, and the GNUPro® logo are all
registered trademarks of Red Hat, Inc.

HP-UX® is aregistered trademark of Hewlett-Packard® Company.
Solaris™ is atrademark of Sun® Microsystems, Inc.

Windows? is aregistered trademark of Microsoft® Corporation, Inc.
UNIX® isaregistered trademark of The Open Group.

All other brand and product names, trademarks, and copyrights are the property of
their respective owners.

No part of this document may be reproduced in any form or by any means without the
prior express written consent of Red Hat, Inc.

No part of this document may be changed an/or modified without the prior express
written consent of Red Hat, Inc.

GNUPro Warranty

The GNUPro Toolkit is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Red Hat.

For non-customers, GNUPro Toolkit software has NO WARRANTY .

Because this software is licensed free of charge, there are no warranties for it, to the

extent permitted by applicable law. Except when otherwise stated in writing, the

copyright holders and/or other parties provide the software “as is” without warranty of
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of the software is with you. Should the software prove
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the program
as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility
of such damages.

ii m User’s Guide for Altera Nios GNUPro Toolkit

How to Contact Red Hat

How to Contact Red Hat

Red Hat Corporate Headquarters
2600 Meridian Parkway
Durham, NC 27713 USA
Telephone (toll free): +1 888 REDHAT 1
Telephone (main line): +1 919 547 0012
Telephone (FAX ling): +1 919 547 0024
Website: htt p: // ww. redhat . cont

Part #: 300-400-1010099-1.0

GNUPro Toolkit User’s Guide for Altera Nios = iii

iv m User’s Guide for Altera Nios GNUPro Toolkit

Contents

How to Contact Red Hat...........ccooeev e iii
(a1 oo U Tt Yo o SR 1
Tool Naming CONVENLIONS.........ccccevcieieeiiecee e creesee e sree e ee e 1
Windows Environment SEttiNgSccocevvveveeiese s 2
Case SENSILIVITY .oveveciecieccer e e e e 3
TOOIKIt FEALUIES ..ot 3
Processor VErSIONcccvceeieieceesie ettt 3
Targets SUPPOITEd.......c.eccieeieeie et et sre e b e 3

[[0S KRS 0] 00 = 4
Object File FOrmMat.........ccocveciriee e 4
LIV L0 = S SRTRS 5
Windows NT Operating SySteMcccecvieveeiiesieseece e seseeeeniens 7
Create SOUrCE COUB.......ocuveeeeicieeee et 7
Compile, Assemble and Link from Source Code...........ccceeueeneee. 7
Run the Executable on the Stand-alone Simulator 8
Run Under the DebUQQESccvevieieiieie e 8
Debug with the Built-in SImulatorcccoevvvvieveiceieece e 9
Assembler Listing from Source Code.........ccccoeeveevvveeceeieeneennn. 11
Solaris 2.5.1 Operating SYySteMcccvcereiieeiieeree e see e e 12
Create SOUrCE COUE........ccveeeciecteee ettt 12
Compile, Assemble and Link from Source Code....................... 12

GNUPro Toolkit User’'s Guide for Altera Nios m v

Run the Executable on the Stand-alone Simulator 13

Run Under the Debugger ... 13
Debug with the Built-in Simulatorcccccvvvvieve e, 14
Assembler Listing from Source Code.........cccoeevevvveeceeseeneenne. 16
REFEIENCE.....cii e 17
100111 o1 1= SRS 18
Nios Command Line Options........c.cceeveevercieenecieecrieevee e 18
Preprocessor SYMBOISccceeier i 18
NIOS AHBULES..... ..o 18
T 11 = o 18
ABI SUMMANY ...t 18
Data Type Sizesand AligNmMENtS..........ccccceeveeviesiecsesiieeseenieens 19
FLOBEING-POINTciveiiecieceee st ene s 19
S [= £ PSS 19
LEaf ProOCEAUIES......ccve ettt 20

S o = 1 L= DS 20
Argument PasSiNg.......ccccceieerieriereie s sreseeseesreesesseesseesneenses 23
RELIUIMN VEAIUES......c.ceeecee ettt 23
ASSEMDBIEN ... 24
Nios Command Line OptioNns........cccceciveverieeniecieeccie e see e 24
Y 1= O 24
SpecCial CharaCterS.......ccoicieiieiee et 24
REGISLEr NAIMES.......ocviiiiiece et 24
Addressing MOdES........cceevviieiieeesese e 25
@N MOQITIES ..t 25
S = U0 (0 T o] 0 26
DLz e W AN Lo 01001 0| O 27
Condition Code SPECITIErS......cccvvviierierircer e 27
FLOBLING-POINTooveiiecieeeee et ene s 28

L0 o000 (=== TP 29
T 1= 29
Nios Command Line OptioNns........ccccceevevercieenecieeeiee e see e 29
LiNKEr SCIHPL...veeiiie e 29
D= o 1o o = S 30
Nios Command Line OptioNns........ccccecveeverceeneciee e evee e 30

S 01U 1= o S 31
Bibliography ..o s 33

vi ® User's Guide for Altera Nios GNUPro Toolkit

Introduction

The GNUPro® Toolkit from Red Hat is a complete solution for C and C++
development for the Altera Nios™. The tools include the compiler, interactive
debugger and utilities libraries. The User’s Guide for Altera Nios consists of the
following sections:

Introduction
An introduction to the features of the GNUPro Toolkit.

* Reference
Nios-specific features of the main GNUPro Tools.

» Bibliography

Tool Naming Conventions

Cross-development tools in the Red Hat GNUPro Toolkit normally have names that
reflect the target processor and the object file format that is output by the tools

(for example, ELF). This makes it possible to install more than one set of tools in the
same binary directory, including both native and cross-development tools.

The complete tool name is a three-part hyphenated string. The first part indicates the

GNUPro Toolkit User’'s Guide for Altera Nios = 1

Introduction

processor family and the mode of operation (ni os). The second part indicates the file
format output by the tool (el f). Thethird part is the generic tool name (gcc). For
example, the GCC ELF compiler for the AlteraNiosis

ni os-el f-gcc.

The binaries for aWindows 95/NT hosted toolchain are installed with an . exe suffix.
However, the . exe suffix does not need to be specified when running the executable.

The Nios package includes the following supported tools:

Tool Description Tool Name
GCC compiler ni os-el f-gcc

C++ compiler ni os-el f-g++

GAS assembler ni os-el f-as

GLD linker ni os-elf-1d
Standalone simulator ni os-el f-run
Binary Utilities ni os-el f-ar

ni os-el f-dlltool
ni os-el f-nm

ni os- el f - obj copy
ni os- el f - obj dunp
nios-elf-ranlib
ni os-el f-readel f
ni os-el f-size

ni os-el f-strings
nios-elf-strip

GDB debugger ni os-el f-gdb

Windows Environment Settings

For the Windows 95/NT toolchain the libraries are installed in different locations.
Therefore, the Windows 95/NT hosted toolchain requires the foll owing environmental
settings to function properly. Assumethe releaseisinstalled in C: \ REDHAT.

SET PROOT=C: \redhat\ ni os- yymnmdd

SET PATH=%ROOT% H- i 686- cygwi n32\ Bl N; %PATH%

SET | NFOPATH=%’ROOT% i nf o

REM Set TMPDIR to point to a randisk if you have one
SET TMPDI R=%°ROOT%

NOTE: Thevariable yymdd indicates the release date printed on the CD-ROM.

2 m User’s Guide for Altera Nios GNUPro Toolkit

Case Sensitivity

Case Sensitivity

The following strings are case sensitive under UNIX and Windows 95/NT:
command line options

* assembler labels

* linker script commands
section names

= file names within makefiles

= file names are case sensitive under UNIX

The following strings are not case sensitive under UNIX or Windows 95/NT:
GDB commands

= assembler instructions and register names

Case sensitivity for Windows 95/NT is dependent on system configuration. By
default, file names under Windows 95/NT are not case sensitive.

It isimportant to remember that the GNUPro Toolkit is case sensitive. Therefore,
enter all commands and options exactly as indicated in this document.

Toolkit Features

Thefollowing describes Altera Nios-specific features of the GNUPro Toolkit.

Processor Version

AlteraNios

Targets Supported
GNUPro Instruction Set Simulator

GNUPro Toolkit User's Guide for Altera Nios = 3

Introduction

Hosts Supported

CPU Operating System Vendor
PA-RISC HPUX-10.20 and HPUX-11.0 | Hewlett-Packard
SPARC Solaris 2.5.1 and Solaris 2.6 Sun

x86 Windows NT Microsoft

Object File Format

The Niostools support the ELF object file format. Refer to Chapter 4, System V
Application Binary Interface (Prentice Hall, 1990.). Use| d (refer to Using LD in
GNUPro Utilities) or obj copy (refer to The GNU Binary Utilitiesin GNUPro
Utilities) to produce S-records.

4 m User’s Guide for Altera Nios

GNUPro Toolkit

Tutorials

This section gives examples of how to use the main utilities. For more detail, refer to
the individual utility manuals.

It isimportant to remember that the GNUPro ToolKkit is case sensitive on all operating
systems. Therefore, enter all commands and options exactly asindicated in this
document.

GNUPro Toolkit User’'s Guide for Altera Nios = 5

Tutorials

The following chart outlines the sequence of stepsin the tutorial. The assembler
listing from source code is optional.

Create source
code

I ________ A

Compile,
assemble and link
from source code

Assembler listing
from source code

Run executable on
the stand-alone
simulator

Run under the
debugger

Debug with the
built-in simulator

6 = User’s Guide for Altera Nios GNUPro Toolkit

Windows NT Operating System

Windows NT Operating System

The following examples for the Windows NT operating system were created using
GDB (GNUPro Debugger) in command-line mode. They may also be reproduced
using the command prompt in the Console Window of Red Hat Insight (the GUI
interface to the GNUPro Debugger).

Create Source Code

Create the following sample source code and save it ashel | o. c. Use this program to
verify correct installation.
#i ncl ude <stdio. h>

int a, c;

voi d foo(int b)
{

c =a+ b
printf("% + %d = %@\n", a, b, ¢);
}

int main()

{
int b;

a = 3;

b = 4,

printf("Hello, world!'\n");
foo(b);

return O;

}
Compile, Assemble and Link from Source Code

Throughout these examples, screen samples are shown with a gray background. Code
input is shown in plain monofont. Code output is shown in bold monofont. For
Windows NT the command prompt is shown ascC: \ >.

To compile this example to run on the simulator:
C\> nios-elf-gcc -Tsimld -g hello.c -0 hello. exe

To link an executable for the simulator, the correct linker script must be specified with
the - Tsi m | d option.

The - g option generates debugging information and the - o option specifies the name
of the executable to be produced. Other useful options include - ofor standard
optimization, and - @ for extensive optimization. When no optimization option is

GNUPro Toolkit User’s Guide for Altera Nios = 7

Tutorials

specified GCC will not optimize. Refer to “GNU CC Command OptiondJsing
GNU CC in GNUPro Compiler Tools for a complete list of available options.

Run the Executable on the Stand-alone Simulator

To run this program on the stand-alone simulator, enter:
C.\> nios-el f-run hello. exe
hel | o wor| d!
3+4=7
C\>

The simulator executes the program, and returns when the program exits.

Run Under the Debugger

GDB can debug programs by using the built-in simulator (this does not require access
to any hardware). To start GDB enter the command:
ni os- el f-gdb -nw hel | 0. exe

After the initial copyright and configuration information GDB returns its own prompt:

(gdb) .
C\> nios-elf-gdb -nw hel |l 0. exe
GNU gdb 4. 17- ni 0s-990519 Copyri ght 1999 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions. There is absolutely no warranty for
GDB. Type "show warranty" for details. This GDB was configured as
"--host =i 686-cygwin --target=ni os-elf". ..

(gdb)
In our examples, thenw option was used to select the command line interface to GDB
(the Red Hat Insight interface is the default). Theis useful for making transcripts
such as the one above. T-hevoption is also useful when you wish to report a bug in
GDB, because a sequence of commands is simpler to reproduce.
To exit GDB, enter thgui t command at thegdb) prompt.

gdb) quit

C\>

8 m User’s Guide for Altera Nios GNUPro Toolkit

Windows NT Operating System

Debug with the Built-in Simulator

The following is a sample debugging session using thet ar get si mcommand to
specify the GNUPro Instruction Set Simulator as the target:
C.\> nios-elf-gdb -nw hel |l 0. exe
GNU gdb 4. 17- ni 0s-990519 Copyri ght 1999 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
wel come to change it and/or distribute copies of it under certain conditions
Type "show copying" to see the conditions. There is absolutely no warranty for
GDB. Type "show warranty" for details. This GDB was configured as
"--host =i 686-cygwi n --target=ni os-elf"...

(gdb) target sim
Connected to the simulator

(gdb) | oad

Loadi ng section .init, size 0x10 | ma 0x0
Loadi ng section .text, size Oxad6e |nma 0x10
Loadi ng section .fini, size 0x8 | ma Oxad7e
Loadi ng section .rodata, size 0x372 | ma Oxad88
Loadi ng section .data, size 0x3d6 | ma OxbOfc
Loadi ng section .ctors, size Ox4 | ma Oxb4d2
Loadi ng section .dtors, size Ox4 | ma Oxb4d6
Loadi ng section .eh_frame, size 0x1054 | na Oxff 04
Start address 0x10

Transfer rate: 403792 bits in <1 sec

(gdb) break main
Breakpoint 1 at 0x132: file hello.c, line 15

(gdb) run

Starting program C:\hello.exe
Breakpoint 1, main () at hello.c:15
15 a = 3;

(gdb) print a

$1 =0

(gdb) step

16 b = 4;
(gdb) print a

$2 =3

(gdb) Iist

11 int main()
12 {

GNUPro Toolkit User’s Guide for Altera Nios = 9

Tutorials

10 = User’s Guide for Altera Nios GNUPro Toolkit

Windows NT Operating System

Assembler Listing from Source Code

57 001d
58
59
60
61
62
63
64
65
66 0024
67
68
69
70
71
72
73
74 0026
75 0028
76 002a
77 002c
78
79
80 002e
81 0030
82 0032
83 0034
84 0036
85 0038
86
87
88 003a
89 003c
90 003e
91 0040
92 0042

The following command produces an assembler listing:

nios-elf-gcc -g -2 -Wa,-al -c hello.c
The compiler debugging option - g gives the assembler the necessary debugging
information. The - @ option produces optimized code output. The - wa option tellsthe
compiler to pass the text immediately following the comma as a command line to the
assembler. The assembler option - al requests an assembler listing. The- ¢ optiontells
GCC to compile or assemble the source files, but not to link. Here is a partial excerpt
of the output.

00 .text
.p2align 1
.gl obl main
.type mai n, @ uncti on
mai n:
. LFB2:
. LMb:
; start prol ogue
2E78 save %sp, -46
. LCFI 1:
end prol ogue
. LMB:
. LBB2:
. LIM7:
0098 pfx %i (a)
1034 movi %0, % o(a)
6134 movi %gl, 3
01A0 stp [0, 0], %l
. LIVB:
0098 pfx %i (.LC1)
0834 movi %0, % o(.LCl)
0098 pfx %i (printf @)
0134 movi %91, % o(printf@)
E17F call %1
0030 nop
. LMB:
8834 movi %0, 4
0098 pfx %i (f oo@)
0134 movi %91, % o(foo@)
E17F call %1
0030 nop

GNUPro Toolkit User's Guide for Altera Nios = 11

Tutorials

Solaris 2.5.1 Operating System

Thefollowing examplesfor the Solaris 2.5.1 operating system were created using GDB
(GNUPro Debugger) in command-line mode. They may also be reproduced using the
command prompt in the Console Window of Red Hat Insight (the GUI interface to
the GNUPro Debugger).

Create Source Code

Create the following sample source code and save it ashel | o. c. Use this program to
verify correct installation.
#i ncl ude <stdio. h>

int a, c;

voi d foo(int b)
{

c =a+ b
printf("% + %d = %@\n", a, b, ¢);
}

int main()

{
int b;

a = 3;

b = 4,

printf("Hello, world!'\n");
foo(b);

return O;

}
Compile, Assemble and Link from Source Code

Throughout these examples, screen samples are shown with a gray background. Code
input is shown in plain monofont. Code output is shown in bold monofont. For Solaris
2.5.1, the command prompt is shown as %

To compile this example to run on the simulator:
% ni os-elf-gcc -Tsimld -g hello.c -0 hello

To link an executable for the simulator, the correct linker script must be specified with
the - Tsi m | d option.

The - g option generates debugging information and the - o option specifies the name
of the executable to be produced. Other useful options include - ofor standard
optimization, and - @ for extensive optimization. When no optimization option is

12 = User’s Guide for Altera Nios GNUPro Toolkit

Solaris 2.5.1 Operating System

specified GCC will not optimize. Refer to “GNU CC Command OptiondJsing
GNU CC in GNUPro Compiler Tools for a complete list of available options.

Run the Executable on the Stand-alone Simulator

To run this program on the stand-alone simulator, enter:
% ni os-elf-run hello
hel | o wor| d!
3+4=7
%

The simulator executes the program, and returns when the program exits.

Run Under the Debugger

GDB can be used to debug executables using the GNUPro Instruction Set Simulator.
To start GDB enter the command:
ni os-el f-gdb -nw hello

After the initial copyright and configuration information GDB returns its own prompt:

(gdb) .
% ni os-el f-gdb -nw hell o
G\U gdb 4. 17- ni 0s-990519 Copyri ght 1999 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions. There is absolutely no warranty for
GDB. Type "show warranty" for details. This GDB was configured as
"--host =sparc-sun-solaris2.5.1 --target=ni os-el f"...

(gdb)
In our examples, thenw option was used to select the command line interface to GDB
(the Red Hat Insight interface is the default), which is useful for making transcripts
such as the one above. Thevoption is also useful when you wish to report a bug in
GDB, because a sequence of commands is simpler to reproduce.
To exit GDB, enter thgui t command at thegdb) prompt.

gdb) quit

%

GNUPro Toolkit User's Guide for Altera Nios = 13

Tutorials

Debug with the Built-in Simulator

The following is a sample debugging session using thet ar get si mcommand to

specify the GNUPro Instruction Set Simulator as the target:

% ni os-el f-gdb -nw hell o
GNU gdb 4. 17- ni 0s-990519 Copyright 1999 Free Software Foundati on,

I nc.

GDB is free software, covered by the GNU General Public License, and you are

wel come to change it and/or distribute copies of it under certain

condi tions.

Type "show copying" to see the conditions. There is absolutely no warranty for

GDB. Type "show warranty" for details. This GDB was configured as
"--host =sparc-sun-solaris2.5.1 --target=ni os-el f"

(gdb) target sim
Connected to the sinmulator.

(gdb) | oad

Loadi ng section .init, size 0x10 | ma 0x0
Loadi ng section .text, size Oxad6e |nma 0x10
Loadi ng section .fini, size 0x8 | ma Oxad7e
Loadi ng section .rodata, size 0x372 | ma Oxad88
Loadi ng section .data, size 0x3d6 | ma OxbOfc
Loadi ng section .ctors, size Ox4 | ma Oxb4d2
Loadi ng section .dtors, size Ox4 | ma Oxb4d6
Loadi ng section .eh_frame, size 0x1054 | na Oxff 04
Start address 0x10

Transfer rate: 403792 bits in <1 sec

(gdb) break main
Breakpoint 1 at 0x132: file hello.c, line 15

(gdb) run

Starting program /hone/nios/hello
Breakpoint 1, main () at hello.c:15
15 a = 3;

(gdb) print a

$1 =0

(gdb) step

16 b = 4;
(gdb) print a

$2 =3

(gdb) Iist

11 int main()
12 {

14 = User’s Guide for Altera Nios

GNUPro Toolkit

Solaris 2.5.1 Operating System

GNUPro Toolkit User’s Guide for Altera Nios = 15

Tutorials

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Assembler Listing from Source Code

The following command produces an assembler listing:
ni os-elf-gcc -g -2 -Wa, -al

001d

0024

0026
0028
002a
002c

002e
0030
0032
0034
0036
0038

003a
003c
003e
0040
0042

-c hello.c

The compiler debugging option - g gives the assembler the necessary debugging

information. The - @ option produces optimized code output. The - wa option tellsthe
compiler to pass the text immediately following the comma as a command line to the
assembler. The assembler option - al requests an assembler listing. The- ¢ optiontells
GCC to compile or assemble the source files, but not to link. Here is a partial excerpt
of the output.

00

2E78

0098
1034
6134
01A0

0098
0834
0098
0134
E17F
0030

8834
0098
0134
E17F
0030

. text
. p2al
.glob
.type

mai n:

. LFB2:

. LMb:

; sta
save
. LCFI 1:
end
. LMB:

. LBB2:
. LM7:

pf x

novi

novi

stp
. LMVB:

pf x

novi

pf x

novi

cal |

nop
. LMB:

novi
pf x
nmovi
cal |
nop

ign 1
| main

mai n, @ uncti on

rt prol ogue
Y%sp, -46

pr ol ogue

%i (a)

% 0, % o(a)
9%gl, 3

[%0, 0], %l

%i (. LC1)

%00, % o(.LCl)

%i (printf @)

%91, % o(printf@)
%1

%0, 4

%i (f oo@)

%91, % o(foo@)
%91

16 = User’s Guide for Altera Nios

GNUPro Toolkit

Reference

This section describes the ABI and Nios-specific attributes of the main GNUPro tools.
Compiler

= ABI Summary

= Assembler
Linker
Debugger

= Simulator

GNUPro Toolkit User’'s Guide for Altera Nios = 17

Reference

Compiler
This section describes Nios-specific features of the GNUPro Compiler.

Nios Command Line Options

For a list of available generic compiler options, refer to “GNU CC Command
Options” inUsing GNU CC in GNUPro Compiler Tools. In addition, the following
Nios-specific command line options are supported:
-6

Generate code for the Nios-16 processor (default).
- 82

Generate code for the Nios-32 processor.

Preprocessor Symbols

The compiler supports the following preprocessor symbols:
__nios__
Is always defined.

__niosl6__
Defined by default or if mi.6 is used.

__nios32
Defined if- n82 is used.

Nios Attributes

There are no Nios-specific attributes. See “Declaring Attributes of Functions” and
“Specifying Attributes of Variables” in “Extensions to the C Language Family” in
Using GNU CC inGNUPro Compiler Tools for more information.

Limitations

The unary operat@g, a GNU extension which allows labels to be treated as values, is
not supported for the Nios processor. This limitation stems from the fact that code
pointers and data pointers are treated differently by the processor.

ABI Summary

The Altera Nios toolchain supports the Altera Nios ABI.

18 = User’s Guide for Altera Nios GNUPro Toolkit

ABI Summary

Data Type Sizes and Alignments
The following table shows the size and alignment for all data types:

Type Size (16-bit) Size (32-hit)
char 1 byte 1 byte
short 2 bytes 2 bytes

int 2 bytes 4 bytes
I'ong 4 bytes 4 bytes
l'ong | ong 8 bytes 8 bytes
float 4 bytes 4 bytes
doubl e 8 bytes 8 bytes

| ong doubl e 8 bytes 8 bytes

= For the Nios-16 processor, word and pointer size is two bytes.

= For the Nios-32 processor, word and pointer size is four bytes.

= Functions are aligned to two byte boundaries.

= Dataelements are aligned to their natural boundary up to a maximum of 32 hits.
= Structures, unions and strings are always word-aligned.

= Bitfieldsinside structures are aways word-aligned.

= All dignments are strict.

Floating-point

All floating-point values are emulated using | EEE floating-point conventions.

Registers

Out Registers Description

%0 % 8 Return value, call-clobbered
%1 % 9 Call-clobbered

%02 % 10 Call-clobbered

%3 % 11 Call-clobbered

%04 % 12 Call-clobbered

%5 % 13 Call-clobbered

%6 % 14 Stack pointer, call-preserved
%7 % 15 Link register, call-preserved
Local Registers Description

%0 % 16 Call-preserved

%1 % 17 Call-preserved

% 2 % 18 Call-preserved

GNUPro Toolkit User's Guide for Altera Nios = 19

Reference

% 3 % 19 Call-preserved

% 4 % 20 Call-preserved

%5 % 21 Call-preserved

%6 % 22 Call-preserved

%7 % 23 Call-preserved

Global Registers Description

%0 % 0 Call-clobbered

%91 % 1 Call-clobbered

%92 % 2 Static chain, call-clobbered

%93 % 3 Call-clobbered

%94 % 4 Call-clobbered

%95 % 5 Call-clobbered

%96 % 6 Call-clobbered

%7 % 7 Call-clobbered

In Registers Description

% 0 9% 24 Argument register 1, call-preserved

% 1 % 25 Argument register 2, call-preserved

% 2 % 26 Argument register 3, call-preserved

% 3 % 27 Argument register 4, call-preserved

% 4 % 28 Argument register 5, call-preserved

% 5 % 29 Argument register 6, call-preserved

% 6 % 30 Frame and argument pointer, call-preserved

% 7 % 31 Return address, call-preserved
Leaf Procedures

L eaf procedures are those procedures that do not call any other procedures. Some |eaf
procedures can be transformed to use their caller’s register window and stack frame.
This saves execution time and memory, and can be done when the candidate leaf
procedure meets the following conditions:

The procedure contains no reference@stg except in itsave instruction.
It contains no references %p.

It refers to no more than 15 of the 32 registers, including the return address
registerYo7.

When optimized, a leaf procedure will use its caller’s stack frame and registers, and it
will only use registerso0 through%es, %7, andygo throughvg?.

Stack Frame

This section describes the Altera Nios stack frame.

20 m User's Guide for Altera Nios

GNUPro Toolkit

ABI Summary

The stack grows downwards from high addresses to low addresses.
A leaf function is not required to allocate a stack frame if oneis not needed.

The ABI requires aframe pointer to be allocated if any stack is allocated. In other
words, aleaf function that uses no stack does not allocate a frame pointer, but a leaf
function that uses stack or a non-leaf function requires a frame pointer.

Normally astack frame, is allocated for each procedure. Under certain conditions,
optimization may enable a leaf procedure to use its caller’s stack frame instead of one
of its own. In that case, the procedure allocates no space of its own for a stack frame.
The following description of the memory stack applies to all procedures, except leaf
procedures which have been optimized in this way.

At compile time, sixteen words are always allocated in every procedure’s stack frame,
always starting asp, for saving the procedure’s “in” and “local” registers, should a
register window overflow occur.

At compile time, the following are allocated in the stack frames of non-leaf
procedures:

One word, for passing a hidden (implicit) parameter. This is used when the caller
is expecting the callee to return a data aggregate by value. The hidden word
contains the address of stack space allocated (if any) by the caller for that purpose.

Six words, into which the callee may store parameters that must be addressable
At compile time space is allocated as needed in the stack frame for the following:
= Outgoing parameters beyond the sixth

All automatic arrays, automatic data aggregates, automatic scalars which must be
addressable, and automatic scalars for which there is no room in registers

Compiler-generated temporary values (typically when there are too many for the
compiler to keep them all in registers)

At runtime, space can be allocated dynamically in the stack frame for memory
allocated using tha! | oca() function of the C library.

Addressable automatic variables on the stack are addressed with negative offsets
relative tovs p. Dynamically allocated space is addressed with positive offsets from
the pointer returned ky | oca() . Everything else in the stack frame is addressed with
positive offsets relative t@sp.

The following stack frame diagram is for both functions that take a fixed number or
variable number of arguments.

GNUPro Toolkit User's Guide for Altera Nios = 21

Reference

High
memory

SP+46

SP+34

SP+32_>

SP

Low
memory

Before call:

Caller’s locals

alloca() space

Arguments past the
6th argument

Six words to save
arguments passed in
registers, even if not
passed

One word hidden
address for callee to
store aggregate return
values

Sixteen word
register save area

FP+46

FP+34,

FP+32

FP

SP+46

SP+34

SP+32

SP

After call:

Caller’s locals

alloca() space

Arguments past the
6th argument

Six words to save
arguments passed in
registers, even if not
passed

One word hidden
address for callee to
store aggregate return
values

Sixteen word
register save area

Callee’s locals

Registers saved

alloca() space

Arguments past the
6th argument

Six words to save
arguments passed in
registers, even if not
passed

One word hidden
address for callee to
store aggregate return
values

Sixteen word
register save area

22 m User's Guide for Altera Nios

GNUPro Toolkit

ABI Summary

Argument Passing

Function arguments are passed in registers %0 through %5, with lower-numbered
registers being allocated to earlier arguments. Registers are allocated consecutively,
with no gaps. When all six registers have been filled, any remaining arguments are
placed in the stack argument area, allocating from lower to higher addresses. Each
argument starts on aword boundary.

= Any argument whose address is not needed and it is four words in size or smaller,
whether scalar (e.g., integers, floats) or aggregate (e.g., structures, unions) is
passed in consecutive registers. Lower-numbered registers hold less significant
words of the value.

For example, on Nios-16, if a function’s first argument is a 64dbig |1 ong,
callers should pass it #0, %01, %2 and%e3, with %3 carrying the most
significant word.

If a large argument cannot fit entirely in the remaining registers, the caller must
split the argument between the remaining registers and the stack. The registers
hold the less significant portion of the argument, and the stack holds the more
significant portion. As before, lower-numbered registers and lower addresses hold
less significant words.

To pass any argument larger than four words, the caller must copy the argument to
a buffer reserved for it in its own local variable area. The caller then passes the
address of this buffer as the argument.

If the callee takes a variable number of arguments, it stores all its argument registers in
an argument register save area. This area is six words long, just large enough to hold
all the argument registers, and allocated just below any arguments received on the
stack. Thus, once the registers have been saved, all the function’s arguments appear in
a contiguous block of memory, starting with the argument register save area. To walk
the argument list, the callee needs only advance a pointer from lower to higher
addresses.

Return Values

All values that fit in a word are returned%o. This includes structures and unions.

For values larger than a word, the caller allocates a buffer of the appropriate size in its
own local variable area, and passes the address of this buffer to the callee in the hidden
address stack slot. The callee must return the buffer's address in ragister

GNUPro Toolkit User's Guide for Altera Nios = 23

Reference

Assembler

This section describes Nios-specific features of the GNUPro Assembler.

Nios Command Line Options

For a list of available generic assembler options, refer to “Command Line Options” in
Using as in GNUPro Utilities. The Nios version of the assembler has only one
machine dependent option.

-6
Assemble for the Nios-16 processor (default).

- B2
Assemble for the Nios-32 processor

Syntax

There are no size modifiers for instructions, nor can they be run in parallel.
Instructions are handled one at a time and are always 16 bits in size. Object files
assembled for different processors cannot be linked together.

Special Characters

The Nios assembler supports the following special characters:

semicolon () and pound sigr#j
Both characters are line comment characters when used in the zero column. The
semicolon may also be used to start a comment anywhere within a line.

percent signy
This character is used as a prefix for register names. For exasngle:
Register Names

You can use the predefined symbmls throughes 31 to refer to the Nios registers.
You can also us#sp as an alias fow 14. Register names are not case sensitive.

Nios also has predefined symbols for these registers:

Usage Symbols Registers
In % 0-% 7 % 24- % 31
Loca % 0- % 7 % 16- % 23
Out %00- Yo7 % 8- % 15
Global %90- Yg7 % 0- % 7

These predefined symbols are not recognized by the debugger or the disassembler.

24 m User's Guide for Altera Nios GNUPro Toolkit

Assembler

Addressing Modes

The assembler understands the following addressing modes for the Nios. The symbol
Rn inthe following examples refers to any of the specifically numbered registers or
register pairs, but not the control registers.
%Rn
Register direct
[9&Rn]
Register indirect
[9Rn, offset]
Register indirect with offset
addr
PC relative address
%i (addr)
hi 11 bits of 16-bit absolute address
% o(addr)
lo 5 bits of 16-bit absolute address
% hi (addr)
hi 11 bits of 32-bit absolute address
%! o(addr)
lo 5 bits of top 16 bits of 32 bit absolute address
#i mm
Immediate value
Indirect references are always in sguare brackets. For example
[% 2]

means the storage addressed by % 2.

Registers are always prefixed by the percent sign (%9. Immediate values are generally
prefixed by the pound sign (#) or nothing at all.

@h Modifier

The @ modifier is used as a suffix for a symbol identifier to get the symbol's address
in halfwords

For example:
pf x %i (f oo@)
movi % 4, % o(f oo@)
jmp %4
nop
f oo:

or

GNUPro Toolkit User's Guide for Altera Nios = 25

Reference

ldc % 3,table

jmp %3
tabl e:

.nword foo@

The @ modifier isrequired becausej np and cal | instructions all require addresses
that have been shifted to the right by 1 bit. Regular addresses also have to be honored
because storage accesses still use them, for example:

st [W3],%2

Thus, you need a way to refer to a symbol’s address in either formag Dptional
suffix handles this.

ohi () gives the top 11 bits of a half-word, amad() gives the bottom 5 bits of a
half-word.%«hi () gives the top 11 bits of a full-word asgl o() gives the bottom 5
bits of the top halfword.

For example, if you wanted to load with - 42:

pf X Ui (- 42)

nmovi %5, % o(-42)

On a Nios-32 machine you have to load both the top and bottom halfwords so you
have:

pf X Ui (- 42)

movi %5, % o(-42)

pf x %hi (-42)

movhi % 5, %Il o(- 42)

Pseudo-ops

The pseudo-opnwor d has been added. This pseudo-op means a native word-size of
data. For Nios-16, it is two bytes, for Nios-32 it is four bytes. The native word-size
should not be confused with a “word,” which is 4-bytes for both platforms.

The following is the pseudo-ops list (in addition to the standard list):
.word
4 bytes
.1 ong
Same asword
.hal f
2 bytes
.short
Same ashal f
. nword
Same aswor d for Nios-32, or same asal f for Nios-16

26 m User's Guide for Altera Nios GNUPro Toolkit

Assembler

Data Alignment

.align x

Dataisnot aligned by default. The . al i gn statement isrequired. The. al i gn
keyword alignsto 2 raised to the power of x, where x isthe variable specified. For

example
.align 3

aignsto an 8-byte word boundary

Condition Code Specifiers

Thefollowing cc_ codes were added for both the SKPS and IFS instructions. The
SKPS instruction “skips” the next instruction if the condition is true. The IFS
instruction performs the next instruction “if” the condition is true. The following

special variables have been added:
cc_eq

Check for equal
cc_z

Check for zero
cc_ne

Check for not equal
cc_nz

Check for not zero
cc_gt

Check for greater than
cc_ge

Check for greater than or equal
cc |t

Check for less than
cc_le

Check for less than or equal
cc |s

Check for less than same (unsigned comparison)
cc_hi

Check for higher than (unsigned comparison)
cc_m

Check for negative
cc_n

Same as cc_mi

GNUPro Toolkit

User's Guide for Altera Nios = 27

Reference

cc_pl

Check for positive
CC_p

Sameascc_pl
cc_cc

Check for carry clear
cc_nc

Sameascc_cc
cc_cs

Check for carry set
cc_c

Sameascc_cs
cc_vc

Check for overflow clear
cc_nv

Sameascc_vce
cc_vs

Check for overflow set
cc_vV

Sameascc_vs

Implementation

SKPS and I FS use opposite condition codes.

To implement a branch not equal to f oo, enter either:
skps cc_eq

br foo

or

ifs cc_ne
br foo

To branch to f oo on greater than or equal, enter either:

ifs cc_ge
br foo

or

skps cc_It
br foo

A br never specifies @ (you are branching to f oo).

Floating-point

Although the Nios has no hardware floating-point, the. f | oat and. doubl e directives

28 m User's Guide for Altera Nios

GNUPro Toolkit

Linker

generate |EEE floating point numbers for compatibility with other development tools.

Opcodes

The assembler implements all the standard Nios opcodes.

Linker

This section describes Nios-specific features of the GNUPro Linker.

Nios Command Line Options

For a list of available generic linker options, refer to “Linker scriptdJsimg Id in
GNUPro Utilities. There are no Nios-specific command line linker options.

Linker Script

The GNU Linker uses a linker script to determine how to process each section in an
object file, and how to lay out the executable. The linker script is a declarative
program consisting of a number of directives. For instanc&Ntry() directive
specifies the symbol in the executable that will be the executable’s entry point.

When building C or C++ executables to run under the simulator, you must specify the
simulator linker script Tsi m | d.

Because this linker script refers to the C, simulator-syscall, and the gcc libraries, it is
recommended that you link using thies- el f - gcc command and specifyfsi m | d.

Theni os- el f-gcc command sets up the necessary library paths so that the library
references are properly resolved. For example:

ni os-elf-gcc -c -g -nmB2 foonmin.c

ni os-elf-gcc -c -g -nmB2 fooextra.c

ni os-elf-gcc -g -nB2 -Tsimld -0 foo foonain.o fooextra.o

There are actually two simulator links scripts: onenfars16 and the other for

ni 0s32. Theni os16 platform requires a special linker script because code may reside
above the 64K line, whereas data must reside below 64kniBae2 script is similar

to traditional elf linker scripts, where data such as the heap and stack, reside after the
code. When you use os- el f - gcc and specify Tsi m | d, the appropriated script is

used, based on thencompiler option. Usingmié (or defaulting) causes theos16

version ofsi m | d to be used. Usingn82 causes thei os32 version ofsim 1 d to be

used.

Theni 0s16 linker script is located ini os-el f/1i b/ si m1d. Theni 0s32 linker

GNUPro Toolkit User's Guide for Altera Nios = 29

Reference

scriptislocated in ni os-el f/1i b/ nB2/simld.

Debugger

This section describes Nios-specific features of the GNUPro Debugger. There are
three ways for GDB to debug programs for an Nios target.ration of the specific
evaluation board.

1. Simulator:

GDB'’s built-in software simulation of the Nios processor allows the debugging of
programs compiled for the Nios without requiring any access to actual hardware.
To activate this mode in GDB typer get si m Then load the code into the
simulator by typing oad and debug it in the normal fashion.

To download through the serial port, use the following GDB commands to load
your program:

set renotebaud 38400

target renote port

| oad
First the baud rate is set to 38400 withdbe r enot ebaud command. Then you
must connect GDB to the program using the target remote commanchdrere
is the name of the serial port on your host. Then the program is loaded with the
| oad command.To continue execution of your program use the &bB nue
command, NOT theun command.

To download via ethernet, use the following GDB commands to load your
program:

target renote devi ce_nane: et her net_port

| oad
First you must connect GDB to the program using th@et renote command
using the above syntax. Then the program is loaded withotliecommand.To
continue execution of your program use the GdaBt i nue command, NOT the
run command.

Nios Command Line Options

For the available generic debugger options, refBretmigging with GDB in GNUPro
Debugging Tools. There are no Nios-specific debugger command line options.

30 = User's Guide for Altera Nios GNUPro Toolkit

Simulator

Simulator

The following command can be used to start the simulator
nios-elf-run [-t] a.out

where - t causes atrace of the simulator to be output to a. out .

GNUPro Toolkit User's Guide for Altera Nios = 31

Reference

32 m User’s Guide for Altera Nios GNUPro Toolkit

Bibliography

Getting Started with GNUPro Toolkit
(http://wmv. redhat . conf apps/ support)

GNUPro Compiler Tools
(http://wmv. redhat . conf apps/ support)

GNUPro Debugging Tools
(http://wmv. redhat . conf apps/ support)

GNUPro Libraries

(http://wmv. redhat . conf apps/ support)
GNUPro Utilities

(http://wmv. redhat . conf apps/ support)

GNUPro Tools for Embedded Systems
(htt p://wmv. redhat . cont apps/ support)

GNUPro Toolkit User’'s Guide for Altera Nios = 33

Bibliography

34 m User’s Guide for Altera Nios GNUPro Toolkit

	User’s Guide for Altera�Nios™
	How to Contact Red�Hat

	Introduction
	Tool Naming Conventions
	Windows Environment Settings
	Case Sensitivity
	Toolkit Features
	Processor Version
	Targets Supported
	Hosts Supported
	Object File Format

	Tutorials
	Windows NT Operating System
	Create Source Code
	Compile, Assemble and Link from Source Code
	Run the Executable on the Stand-alone Simulator
	Run Under the Debugger
	Debug with the Built-in Simulator
	Assembler Listing from Source Code

	Solaris 2.5.1 Operating System
	Create Source Code
	Compile, Assemble and Link from Source Code
	Run the Executable on the Stand-alone Simulator
	Run Under the Debugger
	Debug with the Built-in Simulator
	Assembler Listing from Source Code

	Reference
	Compiler
	Nios Command Line Options
	Preprocessor Symbols
	Nios Attributes
	Limitations

	ABI Summary
	Data Type Sizes and Alignments
	Floating-point
	Registers
	Leaf Procedures
	Stack Frame
	Argument Passing
	Return Values

	Assembler
	Nios Command Line Options
	Syntax
	Special Characters
	Register Names
	Addressing Modes
	@h Modifier
	Pseudo-ops
	Data Alignment
	Condition Code Specifiers
	Implementation

	Floating-point
	Opcodes

	Linker
	Nios Command Line Options
	Linker Script

	Debugger
	Nios Command Line Options

	Simulator

	Bibliography

