
GNUPRO® TOOLKIT

User’s Guide for Altera Nios™
June 2000

Version 1.0

ty of

as to
ve

ram
,

te or

h any
ibility
Copyright © 2000 Red Hat®, Inc. All rights reserved.

Red Hat®, the Red Hat Shadow Man logo, GNUPro®, and the GNUPro® logo are all
registered trademarks of Red Hat, Inc.

HP-UX® is a registered trademark of Hewlett-Packard® Company.

Solaris™ is a trademark of Sun® Microsystems, Inc.

Windows® is a registered trademark of Microsoft® Corporation, Inc.

UNIX® is a registered trademark of The Open Group.

All other brand and product names, trademarks, and copyrights are the property of
their respective owners.

No part of this document may be reproduced in any form or by any means without the
prior express written consent of Red Hat, Inc.

No part of this document may be changed an/or modified without the prior express
written consent of Red Hat, Inc.

GNUPro Warranty

The GNUPro Toolkit is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Red Hat.

For non-customers, GNUPro Toolkit software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the
extent permitted by applicable law. Except when otherwise stated in writing, the
copyright holders and/or other parties provide the software “as is” without warran
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk
the quality and performance of the software is with you. Should the software pro
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the prog
as permitted above, be liable to you for damages, including any general, special
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccura
losses sustained by you or third parties or a failure of the program to operate wit
other programs), even if such holder or other party has been advised of the poss
of such damages.
ii ■ User’s Guide for Altera Nios GNUPro Toolkit

How to Contact Red Hat
How to Contact Red Hat
Red Hat Corporate Headquarters

2600 Meridian Parkway
Durham, NC 27713 USA
Telephone (toll free): +1 888 REDHAT 1
Telephone (main line): +1 919 547 0012
Telephone (FAX line): +1 919 547 0024
Website: http://www.redhat.com/

Part #: 300-400-1010099-1.0
GNUPro Toolkit User’s Guide for Altera Nios ■ iii

iv ■ User’s Guide for Altera Nios GNUPro Toolkit

Contents

How to Contact Red Hat.. iii

Introduction...1

Tool Naming Conventions ...1
Windows Environment Settings ..2
Case Sensitivity ...3
Toolkit Features ...3

Processor Version ...3
Targets Supported ...3
Hosts Supported..4
Object File Format..4

Tutorials ...5

Windows NT Operating System ..7
Create Source Code ..7
Compile, Assemble and Link from Source Code.........................7
Run the Executable on the Stand-alone Simulator8
Run Under the Debugger..8
Debug with the Built-in Simulator ...9
Assembler Listing from Source Code .. 11

Solaris 2.5.1 Operating System ...12
Create Source Code ..12
Compile, Assemble and Link from Source Code.......................12
GNUPro Toolkit User’s Guide for Altera Nios n v

Run the Executable on the Stand-alone Simulator13
Run Under the Debugger..13
Debug with the Built-in Simulator ...14
Assembler Listing from Source Code ..16

Reference..17

Compiler ..18
Nios Command Line Options...18
Preprocessor Symbols ..18
Nios Attributes..18
Limitations..18

ABI Summary..18
Data Type Sizes and Alignments..19
Floating-point ...19
Registers ...19
Leaf Procedures ..20
Stack Frame ..20
Argument Passing...23
Return Values..23

Assembler ..24
Nios Command Line Options...24
Syntax ...24
Special Characters ..24
Register Names...24
 Addressing Modes ...25
@h Modifier ...25
Pseudo-ops..26
Data Alignment ..27
Condition Code Specifiers..27
Floating-point ...28
Opcodes ..29

Linker...29
Nios Command Line Options...29
Linker Script ...29

Debugger..30
Nios Command Line Options...30

Simulator..31

Bibliography ..33
vi n User’s Guide for Altera Nios GNUPro Toolkit

hat

 the

s the
Introduction

The GNUPro® Toolkit from Red Hat is a complete solution for C and C++
development for the Altera Nios™. The tools include the compiler, interactive
debugger and utilities libraries. The User’s Guide for Altera Nios consists of the
following sections:
■ Introduction

An introduction to the features of the GNUPro Toolkit.
■ Reference

Nios-specific features of the main GNUPro Tools.
■ Bibliography

Tool Naming Conventions
Cross-development tools in the Red Hat GNUPro Toolkit normally have names t
reflect the target processor and the object file format that is output by the tools
(for example, ELF). This makes it possible to install more than one set of tools in
same binary directory, including both native and cross-development tools.

The complete tool name is a three-part hyphenated string. The first part indicate
GNUPro Toolkit User’s Guide for Altera Nios ■ 1

Introduction
processor family and the mode of operation (nios). The second part indicates the file
format output by the tool (elf). The third part is the generic tool name (gcc). For
example, the GCC ELF compiler for the Altera Nios is
nios-elf-gcc.

The binaries for a Windows 95/NT hosted toolchain are installed with an .exe suffix.
However, the .exe suffix does not need to be specified when running the executable.

The Nios package includes the following supported tools:

Windows Environment Settings
For the Windows 95/NT toolchain the libraries are installed in different locations.
Therefore, the Windows 95/NT hosted toolchain requires the following environmental
settings to function properly. Assume the release is installed in C:\REDHAT.
SET PROOT=C:\redhat\nios-yymmdd
SET PATH=%PROOT%\H-i686-cygwin32\BIN;%PATH%
SET INFOPATH=%PROOT%\info
REM Set TMPDIR to point to a ramdisk if you have one
SET TMPDIR=%PROOT%

NOTE: The variable yymmdd indicates the release date printed on the CD-ROM.

Tool Description Tool Name

GCC compiler nios-elf-gcc

C++ compiler nios-elf-g++

GAS assembler nios-elf-as

GLD linker nios-elf-ld

Standalone simulator nios-elf-run

Binary Utilities nios-elf-ar
nios-elf-dlltool
nios-elf-nm
nios-elf-objcopy
nios-elf-objdump
nios-elf-ranlib
nios-elf-readelf
nios-elf-size
nios-elf-strings
nios-elf-strip

GDB debugger nios-elf-gdb
2 ■ User’s Guide for Altera Nios GNUPro Toolkit

Case Sensitivity
Case Sensitivity
The following strings are case sensitive under UNIX and Windows 95/NT:
■ command line options
■ assembler labels
■ linker script commands
■ section names
■ file names within makefiles
■ file names are case sensitive under UNIX

The following strings are not case sensitive under UNIX or Windows 95/NT:
■ GDB commands
■ assembler instructions and register names

Case sensitivity for Windows 95/NT is dependent on system configuration. By
default, file names under Windows 95/NT are not case sensitive.

It is important to remember that the GNUPro Toolkit is case sensitive. Therefore,
enter all commands and options exactly as indicated in this document.

Toolkit Features
The following describes Altera Nios-specific features of the GNUPro Toolkit.

Processor Version
Altera Nios

Targets Supported
GNUPro Instruction Set Simulator
GNUPro Toolkit User’s Guide for Altera Nios ■ 3

Introduction
Hosts Supported

Object File Format
The Nios tools support the ELF object file format. Refer to Chapter 4, System V
Application Binary Interface (Prentice Hall, 1990.). Use ld (refer to Using LD in
GNUPro Utilities) or objcopy (refer to The GNU Binary Utilities in GNUPro
Utilities) to produce S-records.

CPU Operating System Vendor

PA-RISC HPUX-10.20 and HPUX-11.0 Hewlett-Packard

SPARC Solaris 2.5.1 and Solaris 2.6 Sun

x86 Windows NT Microsoft
4 ■ User’s Guide for Altera Nios GNUPro Toolkit

Tutorials

This section gives examples of how to use the main utilities. For more detail, refer to
the individual utility manuals.

It is important to remember that the GNUPro Toolkit is case sensitive on all operating
systems. Therefore, enter all commands and options exactly as indicated in this
document.

1

GNUPro Toolkit User’s Guide for Altera Nios ■ 5

Tutorials
The following chart outlines the sequence of steps in the tutorial. The assembler
listing from source code is optional.

Create source
code

Assembler listing
from source code

Compile,
assemble and link
from source code

Run executable on
the stand-alone
simulator

Run under the
debugger

Debug with the
built-in simulator
6 ■ User’s Guide for Altera Nios GNUPro Toolkit

Windows NT Operating System
Windows NT Operating System
The following examples for the Windows NT operating system were created using
GDB (GNUPro Debugger) in command-line mode. They may also be reproduced
using the command prompt in the Console Window of Red Hat Insight (the GUI
interface to the GNUPro Debugger).

Create Source Code
Create the following sample source code and save it as hello.c. Use this program to
verify correct installation.
#include <stdio.h>

int a, c;

void foo(int b)
{
 c = a + b;
 printf("%d + %d = %d\n", a, b, c);
}

int main()
{
 int b;

 a = 3;
 b = 4;
 printf("Hello, world!\n");
 foo(b);
 return 0;
}

Compile, Assemble and Link from Source Code
Throughout these examples, screen samples are shown with a gray background. Code
input is shown in plain monofont. Code output is shown in bold monofont. For
Windows NT the command prompt is shown as C:\>.

To compile this example to run on the simulator:

To link an executable for the simulator, the correct linker script must be specified with
the -Tsim.ld option.

The -g option generates debugging information and the -o option specifies the name
of the executable to be produced. Other useful options include -O for standard
optimization, and -O2 for extensive optimization. When no optimization option is

C:\> nios-elf-gcc -Tsim.ld -g hello.c -o hello.exe
GNUPro Toolkit User’s Guide for Altera Nios ■ 7

Tutorials

cess

pt:

DB

in
specified GCC will not optimize. Refer to “GNU CC Command Options” in Using
GNU CC in GNUPro Compiler Tools for a complete list of available options.

Run the Executable on the Stand-alone Simulator
To run this program on the stand-alone simulator, enter:

The simulator executes the program, and returns when the program exits.

Run Under the Debugger
GDB can debug programs by using the built-in simulator (this does not require ac
to any hardware). To start GDB enter the command:
nios-elf-gdb -nw hello.exe

After the initial copyright and configuration information GDB returns its own prom
(gdb).

In our examples, the -nw option was used to select the command line interface to G
(the Red Hat Insight interface is the default). The -nw is useful for making transcripts
such as the one above. The -nw option is also useful when you wish to report a bug
GDB, because a sequence of commands is simpler to reproduce.

To exit GDB, enter the quit command at the (gdb) prompt.

C:\> nios-elf-run hello.exe
hello world!
3 + 4 = 7
C:\>

C:\> nios-elf-gdb -nw hello.exe
GNU gdb 4.17-nios-990519 Copyright 1999 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions. There is absolutely no warranty for
GDB. Type "show warranty" for details. This GDB was configured as
"--host=i686-cygwin --target=nios-elf"...

(gdb)

gdb) quit
C:\>
8 ■ User’s Guide for Altera Nios GNUPro Toolkit

Windows NT Operating System
Debug with the Built-in Simulator
The following is a sample debugging session using the target sim command to
specify the GNUPro Instruction Set Simulator as the target:

C:\> nios-elf-gdb -nw hello.exe
GNU gdb 4.17-nios-990519 Copyright 1999 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions. There is absolutely no warranty for
GDB. Type "show warranty" for details. This GDB was configured as
"--host=i686-cygwin --target=nios-elf"...

(gdb) target sim
Connected to the simulator.

(gdb) load
Loading section .init, size 0x10 lma 0x0
Loading section .text, size 0xad6e lma 0x10
Loading section .fini, size 0x8 lma 0xad7e
Loading section .rodata, size 0x372 lma 0xad88
Loading section .data, size 0x3d6 lma 0xb0fc
Loading section .ctors, size 0x4 lma 0xb4d2
Loading section .dtors, size 0x4 lma 0xb4d6
Loading section .eh_frame, size 0x1054 lma 0xff04
Start address 0x10
Transfer rate: 403792 bits in <1 sec.

(gdb) break main
Breakpoint 1 at 0x132: file hello.c, line 15.

(gdb) run
Starting program: C:\hello.exe
Breakpoint 1, main () at hello.c:15
15 a = 3;

(gdb) print a
$1 = 0

(gdb) step
16 b = 4;

(gdb) print a
$2 = 3

(gdb) list
11 int main()
12 {
GNUPro Toolkit User’s Guide for Altera Nios ■ 9

Tutorials
13 int b;
14
15 a = 3;
16 b = 4;
17 printf("Hello, world!\n");
18 foo(b);
19 return 0;
20 }

(gdb) list foo
1 #include <stdio.h>
2
3 int a, c;
4
5 void foo(int b)
6 {
7 c = a + b;
8 printf("%d + %d = %d\n", a, b, c);
9 }
10

(gdb) break 7
Breakpoint 2 at 0xf4: file hello.c, line 7.

(gdb) continue
Continuing.
Hello, world!
Breakpoint 2, foo (b=4) at hello.c:7
7 c = a + b;

(gdb) step
8 printf("%d + %d = %d\n", a, b, c);

(gdb) print c
$3 = 7

(gdb) next
3 + 4 = 7
9 }

(gdb) backtrace
#0 foo (b=4) at hello.c:9
#1 0x15c in main () at hello.c:18

(gdb) quit
The program is running. Quit anyway (and kill it)? (y or n) y
C:\>
10 ■ User’s Guide for Altera Nios GNUPro Toolkit

Windows NT Operating System
Assembler Listing from Source Code
The following command produces an assembler listing:
nios-elf-gcc -g -O2 -Wa,-al -c hello.c

The compiler debugging option -g gives the assembler the necessary debugging
information. The -O2 option produces optimized code output. The -Wa option tells the
compiler to pass the text immediately following the comma as a command line to the
assembler. The assembler option -al requests an assembler listing. The -c option tells
GCC to compile or assemble the source files, but not to link. Here is a partial excerpt
of the output.

57 001d 00 .text
58 .p2align 1
59 .globl main
60 .type main,@function
61 main:
62 .LFB2:
63 .LM5:
64
65 ; start prologue
66 0024 2E78 save %sp, -46
67 .LCFI1:
68 ; end prologue
69 .LM6:
70
71 .LBB2:
72 .LM7:
73
74 0026 0098 pfx %hi(a)
75 0028 1034 movi %l0, %lo(a)
76 002a 6134 movi %g1, 3
77 002c 01A0 stp [%l0, 0], %g1
78 .LM8:
79
80 002e 0098 pfx %hi(.LC1)
81 0030 0834 movi %o0, %lo(.LC1)
82 0032 0098 pfx %hi(printf@h)
83 0034 0134 movi %g1, %lo(printf@h)
84 0036 E17F call %g1
85 0038 0030 nop
86 .LM9:
87
88 003a 8834 movi %o0, 4
89 003c 0098 pfx %hi(foo@h)
90 003e 0134 movi %g1, %lo(foo@h)
91 0040 E17F call %g1
92 0042 0030 nop
GNUPro Toolkit User’s Guide for Altera Nios ■ 11

Tutorials
Solaris 2.5.1 Operating System
The following examples for the Solaris 2.5.1 operating system were created using GDB
(GNUPro Debugger) in command-line mode. They may also be reproduced using the
command prompt in the Console Window of Red Hat Insight (the GUI interface to
the GNUPro Debugger).

Create Source Code
Create the following sample source code and save it as hello.c. Use this program to
verify correct installation.
#include <stdio.h>

int a, c;

void foo(int b)
{
 c = a + b;
 printf("%d + %d = %d\n", a, b, c);
}

int main()
{
 int b;

 a = 3;
 b = 4;
 printf("Hello, world!\n");
 foo(b);
 return 0;
}

Compile, Assemble and Link from Source Code
Throughout these examples, screen samples are shown with a gray background. Code
input is shown in plain monofont. Code output is shown in bold monofont. For Solaris
2.5.1, the command prompt is shown as %.

To compile this example to run on the simulator:

To link an executable for the simulator, the correct linker script must be specified with
the -Tsim.ld option.

The -g option generates debugging information and the -o option specifies the name
of the executable to be produced. Other useful options include -O for standard
optimization, and -O2 for extensive optimization. When no optimization option is

% nios-elf-gcc -Tsim.ld -g hello.c -o hello
12 ■ User’s Guide for Altera Nios GNUPro Toolkit

Solaris 2.5.1 Operating System

lator.

pt:

DB
ts
in
specified GCC will not optimize. Refer to “GNU CC Command Options” in Using
GNU CC in GNUPro Compiler Tools for a complete list of available options.

Run the Executable on the Stand-alone Simulator
To run this program on the stand-alone simulator, enter:

The simulator executes the program, and returns when the program exits.

Run Under the Debugger
GDB can be used to debug executables using the GNUPro Instruction Set Simu
To start GDB enter the command:
nios-elf-gdb -nw hello

After the initial copyright and configuration information GDB returns its own prom
(gdb).

In our examples, the -nw option was used to select the command line interface to G
(the Red Hat Insight interface is the default), which is useful for making transcrip
such as the one above. The -nw option is also useful when you wish to report a bug
GDB, because a sequence of commands is simpler to reproduce.

To exit GDB, enter the quit command at the (gdb) prompt.

% nios-elf-run hello
hello world!
3 + 4 = 7
%

% nios-elf-gdb -nw hello
GNU gdb 4.17-nios-990519 Copyright 1999 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions. There is absolutely no warranty for
GDB. Type "show warranty" for details. This GDB was configured as
"--host=sparc-sun-solaris2.5.1 --target=nios-elf"...

(gdb)

gdb) quit
%

GNUPro Toolkit User’s Guide for Altera Nios ■ 13

Tutorials
Debug with the Built-in Simulator
The following is a sample debugging session using the target sim command to
specify the GNUPro Instruction Set Simulator as the target:

% nios-elf-gdb -nw hello
GNU gdb 4.17-nios-990519 Copyright 1999 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions. There is absolutely no warranty for
GDB. Type "show warranty" for details. This GDB was configured as
"--host=sparc-sun-solaris2.5.1 --target=nios-elf"...

(gdb) target sim
Connected to the simulator.

(gdb) load
Loading section .init, size 0x10 lma 0x0
Loading section .text, size 0xad6e lma 0x10
Loading section .fini, size 0x8 lma 0xad7e
Loading section .rodata, size 0x372 lma 0xad88
Loading section .data, size 0x3d6 lma 0xb0fc
Loading section .ctors, size 0x4 lma 0xb4d2
Loading section .dtors, size 0x4 lma 0xb4d6
Loading section .eh_frame, size 0x1054 lma 0xff04
Start address 0x10
Transfer rate: 403792 bits in <1 sec.

(gdb) break main
Breakpoint 1 at 0x132: file hello.c, line 15.

(gdb) run
Starting program: /home/nios/hello
Breakpoint 1, main () at hello.c:15
15 a = 3;

(gdb) print a
$1 = 0

(gdb) step
16 b = 4;

(gdb) print a
$2 = 3

(gdb) list
11 int main()
12 {
14 ■ User’s Guide for Altera Nios GNUPro Toolkit

Solaris 2.5.1 Operating System
13 int b;
14
15 a = 3;
16 b = 4;
17 printf("Hello, world!\n");
18 foo(b);
19 return 0;
20 }

(gdb) list foo
1 #include <stdio.h>
2
3 int a, c;
4
5 void foo(int b)
6 {
7 c = a + b;
8 printf("%d + %d = %d\n", a, b, c);
9 }
10

(gdb) break 7
Breakpoint 2 at 0xf4: file hello.c, line 7.

(gdb) continue
Continuing.
Hello, world!
Breakpoint 2, foo (b=4) at hello.c:7
7 c = a + b;

(gdb) step
8 printf("%d + %d = %d\n", a, b, c);

(gdb) print c
$3 = 7

(gdb) next
3 + 4 = 7
9 }

(gdb) backtrace
#0 foo (b=4) at hello.c:9
#1 0x15c in main () at hello.c:18

(gdb) quit
The program is running. Quit anyway (and kill it)? (y or n) y
%

GNUPro Toolkit User’s Guide for Altera Nios ■ 15

Tutorials
Assembler Listing from Source Code
The following command produces an assembler listing:
nios-elf-gcc -g -O2 -Wa,-al -c hello.c

The compiler debugging option -g gives the assembler the necessary debugging
information. The -O2 option produces optimized code output. The -Wa option tells the
compiler to pass the text immediately following the comma as a command line to the
assembler. The assembler option -al requests an assembler listing. The -c option tells
GCC to compile or assemble the source files, but not to link. Here is a partial excerpt
of the output.

57 001d 00 .text
58 .p2align 1
59 .globl main
60 .type main,@function
61 main:
62 .LFB2:
63 .LM5:
64
65 ; start prologue
66 0024 2E78 save %sp, -46
67 .LCFI1:
68 ; end prologue
69 .LM6:
70
71 .LBB2:
72 .LM7:
73
74 0026 0098 pfx %hi(a)
75 0028 1034 movi %l0, %lo(a)
76 002a 6134 movi %g1, 3
77 002c 01A0 stp [%l0, 0], %g1
78 .LM8:
79
80 002e 0098 pfx %hi(.LC1)
81 0030 0834 movi %o0, %lo(.LC1)
82 0032 0098 pfx %hi(printf@h)
83 0034 0134 movi %g1, %lo(printf@h)
84 0036 E17F call %g1
85 0038 0030 nop
86 .LM9:
87
88 003a 8834 movi %o0, 4
89 003c 0098 pfx %hi(foo@h)
90 003e 0134 movi %g1, %lo(foo@h)
91 0040 E17F call %g1
92 0042 0030 nop
16 ■ User’s Guide for Altera Nios GNUPro Toolkit

Reference

This section describes the ABI and Nios-specific attributes of the main GNUPro tools.
■ Compiler
■ ABI Summary
■ Assembler
■ Linker
■ Debugger
■ Simulator

2

GNUPro Toolkit User’s Guide for Altera Nios ■ 17

Reference

s, is
e
Compiler
This section describes Nios-specific features of the GNUPro Compiler.

Nios Command Line Options
For a list of available generic compiler options, refer to “GNU CC Command
Options” in Using GNU CC in GNUPro Compiler Tools. In addition, the following
Nios-specific command line options are supported:
-m16

Generate code for the Nios-16 processor (default).
-m32

Generate code for the Nios-32 processor.

Preprocessor Symbols
The compiler supports the following preprocessor symbols:
__nios__

Is always defined.
__nios16__

Defined by default or if -m16 is used.
__nios32__

Defined if -m32 is used.

Nios Attributes
There are no Nios-specific attributes. See “Declaring Attributes of Functions” and
“Specifying Attributes of Variables” in “Extensions to the C Language Family” in
Using GNU CC in GNUPro Compiler Tools for more information.

Limitations
The unary operator &&, a GNU extension which allows labels to be treated as value
not supported for the Nios processor. This limitation stems from the fact that cod
pointers and data pointers are treated differently by the processor.

ABI Summary
The Altera Nios toolchain supports the Altera Nios ABI.
18 ■ User’s Guide for Altera Nios GNUPro Toolkit

ABI Summary
Data Type Sizes and Alignments
The following table shows the size and alignment for all data types:

■ For the Nios-16 processor, word and pointer size is two bytes.
■ For the Nios-32 processor, word and pointer size is four bytes.
■ Functions are aligned to two byte boundaries.
■ Data elements are aligned to their natural boundary up to a maximum of 32 bits.
■ Structures, unions and strings are always word-aligned.
■ Bitfields inside structures are always word-aligned.
■ All alignments are strict.

Floating-point
All floating-point values are emulated using IEEE floating-point conventions.

Registers

Type Size (16-bit) Size (32-bit)
char 1 byte 1 byte
short 2 bytes 2 bytes
int 2 bytes 4 bytes
long 4 bytes 4 bytes
long long 8 bytes 8 bytes
float 4 bytes 4 bytes
double 8 bytes 8 bytes
long double 8 bytes 8 bytes

Out Registers Description
%o0 %r8 Return value, call-clobbered
%o1 %r9 Call-clobbered
%o2 %r10 Call-clobbered
%o3 %r11 Call-clobbered
%o4 %r12 Call-clobbered
%o5 %r13 Call-clobbered
%o6 %r14 Stack pointer, call-preserved
%o7 %r15 Link register, call-preserved

Local Registers Description
%l0 %r16 Call-preserved
%l1 %r17 Call-preserved
%l2 %r18 Call-preserved
GNUPro Toolkit User’s Guide for Altera Nios ■ 19

Reference

me.
af

nd it
Leaf Procedures
Leaf procedures are those procedures that do not call any other procedures. Some leaf
procedures can be transformed to use their caller’s register window and stack fra
This saves execution time and memory, and can be done when the candidate le
procedure meets the following conditions:
■ The procedure contains no references to %sp, except in its save instruction.
■ It contains no references to %fp.
■ It refers to no more than 15 of the 32 registers, including the return address

register, %o7.

When optimized, a leaf procedure will use its caller’s stack frame and registers, a
will only use registers %o0 through %o5, %o7, and %g0 through %g7.

Stack Frame
This section describes the Altera Nios stack frame.

%l3 %r19 Call-preserved
%l4 %r20 Call-preserved
%l5 %r21 Call-preserved
%l6 %r22 Call-preserved
%l7 %r23 Call-preserved

Global Registers Description
%g0 %r0 Call-clobbered
%g1 %r1 Call-clobbered
%g2 %r2 Static chain, call-clobbered
%g3 %r3 Call-clobbered
%g4 %r4 Call-clobbered
%g5 %r5 Call-clobbered
%g6 %r6 Call-clobbered
%g7 %r7 Call-clobbered

In Registers Description
%i0 %r24 Argument register 1, call-preserved
%i1 %r25 Argument register 2, call-preserved
%i2 %r26 Argument register 3, call-preserved
%i3 %r27 Argument register 4, call-preserved
%i4 %r28 Argument register 5, call-preserved
%i5 %r29 Argument register 6, call-preserved
%i6 %r30 Frame and argument pointer, call-preserved
%i7 %r31 Return address, call-preserved
20 ■ User’s Guide for Altera Nios GNUPro Toolkit

ABI Summary

f one
ame.
eaf

ame,
a

aller

rpose.

ble

:

st be

 the

ts
m
ith

or
The stack grows downwards from high addresses to low addresses.

A leaf function is not required to allocate a stack frame if one is not needed.

The ABI requires a frame pointer to be allocated if any stack is allocated. In other
words, a leaf function that uses no stack does not allocate a frame pointer, but a leaf
function that uses stack or a non-leaf function requires a frame pointer.

Normally a stack frame, is allocated for each procedure. Under certain conditions,
optimization may enable a leaf procedure to use its caller’s stack frame instead o
of its own. In that case, the procedure allocates no space of its own for a stack fr
The following description of the memory stack applies to all procedures, except l
procedures which have been optimized in this way.

At compile time, sixteen words are always allocated in every procedure’s stack fr
always starting at %sp, for saving the procedure’s “in” and “local” registers, should
register window overflow occur.

At compile time, the following are allocated in the stack frames of non-leaf
procedures:
■ One word, for passing a hidden (implicit) parameter. This is used when the c

is expecting the callee to return a data aggregate by value. The hidden word
contains the address of stack space allocated (if any) by the caller for that pu

■ Six words, into which the callee may store parameters that must be addressa

At compile time space is allocated as needed in the stack frame for the following
■ Outgoing parameters beyond the sixth
■ All automatic arrays, automatic data aggregates, automatic scalars which mu

addressable, and automatic scalars for which there is no room in registers
■ Compiler-generated temporary values (typically when there are too many for

compiler to keep them all in registers)

At runtime, space can be allocated dynamically in the stack frame for memory
allocated using the alloca() function of the C library.

Addressable automatic variables on the stack are addressed with negative offse
relative to %fp. Dynamically allocated space is addressed with positive offsets fro
the pointer returned by alloca(). Everything else in the stack frame is addressed w
positive offsets relative to %sp.

The following stack frame diagram is for both functions that take a fixed number
variable number of arguments.
GNUPro Toolkit User’s Guide for Altera Nios ■ 21

Reference
High
memory

After call:

alloca() space

SP

Low
memory

SP+34
One word hidden
address for callee to
store aggregate return
values

Six words to save
arguments passed in
registers, even if not
passed

Arguments past the
6th argument

Caller’s locals

SP+46

Before call:

Sixteen word
register save area

SP+32

alloca() space

FP

FP+34
One word hidden
address for callee to
store aggregate return
values

Six words to save
arguments passed in
registers, even if not
passed

Arguments past the
6th argument

Caller’s locals

FP+46

Sixteen word
register save area

FP+32

Callee’s locals

Registers saved

One word hidden
address for callee to
store aggregate return
values

Six words to save
arguments passed in
registers, even if not
passed

Arguments past the
6th argumentSP+46

Sixteen word
register save areaSP

SP+34

SP+32

Six words to save
arguments passed in
registers, even if not
passed

alloca() space
22 ■ User’s Guide for Altera Nios GNUPro Toolkit

ABI Summary

st
ers
e
 hold

ent to
he

ters in
 hold
he
pear in
 walk

 in its
hidden
Argument Passing
Function arguments are passed in registers %o0 through %o5, with lower-numbered
registers being allocated to earlier arguments. Registers are allocated consecutively,
with no gaps. When all six registers have been filled, any remaining arguments are
placed in the stack argument area, allocating from lower to higher addresses. Each
argument starts on a word boundary.
■ Any argument whose address is not needed and it is four words in size or smaller,

whether scalar (e.g., integers, floats) or aggregate (e.g., structures, unions) is
passed in consecutive registers. Lower-numbered registers hold less significant
words of the value.

For example, on Nios-16, if a function’s first argument is a 64-bit long long,
callers should pass it in %o0, %o1, %o2 and %o3, with %o3 carrying the most
significant word.

If a large argument cannot fit entirely in the remaining registers, the caller mu
split the argument between the remaining registers and the stack. The regist
hold the less significant portion of the argument, and the stack holds the mor
significant portion. As before, lower-numbered registers and lower addresses
less significant words.

■ To pass any argument larger than four words, the caller must copy the argum
a buffer reserved for it in its own local variable area. The caller then passes t
address of this buffer as the argument.

If the callee takes a variable number of arguments, it stores all its argument regis
an argument register save area. This area is six words long, just large enough to
all the argument registers, and allocated just below any arguments received on t
stack. Thus, once the registers have been saved, all the function’s arguments ap
a contiguous block of memory, starting with the argument register save area. To
the argument list, the callee needs only advance a pointer from lower to higher
addresses.

Return Values
All values that fit in a word are returned in %o0. This includes structures and unions.

For values larger than a word, the caller allocates a buffer of the appropriate size
own local variable area, and passes the address of this buffer to the callee in the
address stack slot. The callee must return the buffer’s address in register %o0.
GNUPro Toolkit User’s Guide for Altera Nios ■ 23

Reference

s” in

 The

ler.
Assembler
This section describes Nios-specific features of the GNUPro Assembler.

Nios Command Line Options
For a list of available generic assembler options, refer to “Command Line Option
Using as in GNUPro Utilities. The Nios version of the assembler has only one
machine dependent option.
-m16

Assemble for the Nios-16 processor (default).
-m32

Assemble for the Nios-32 processor

Syntax
There are no size modifiers for instructions, nor can they be run in parallel.
Instructions are handled one at a time and are always 16 bits in size. Object files
assembled for different processors cannot be linked together.

Special Characters
The Nios assembler supports the following special characters:

semicolon (;) and pound sign (#)
Both characters are line comment characters when used in the zero column.
semicolon may also be used to start a comment anywhere within a line.

percent sign (%)
This character is used as a prefix for register names. For example: %r3.

Register Names
You can use the predefined symbols %r0 through %r31 to refer to the Nios registers.
You can also use %sp as an alias for %r14. Register names are not case sensitive.

Nios also has predefined symbols for these registers:

These predefined symbols are not recognized by the debugger or the disassemb

Usage Symbols Registers
In %i0-%i7 %r24-%r31

Local %l0-%l7 %r16-%r23

Out %o0-%o7 %r8-%r15

Global %g0-%g7 %r0-%r7
24 ■ User’s Guide for Altera Nios GNUPro Toolkit

Assembler

ess
 Addressing Modes
The assembler understands the following addressing modes for the Nios. The symbol
Rn in the following examples refers to any of the specifically numbered registers or
register pairs, but not the control registers.
%Rn

Register direct
[%Rn]

Register indirect
[%Rn, offset]

Register indirect with offset
addr

PC relative address
%hi(addr)

hi 11 bits of 16-bit absolute address
%lo(addr)

lo 5 bits of 16-bit absolute address
%xhi(addr)

hi 11 bits of 32-bit absolute address
%xlo(addr)

lo 5 bits of top 16 bits of 32 bit absolute address
#imm

Immediate value

Indirect references are always in square brackets. For example
[%r2]

means the storage addressed by %r2.

Registers are always prefixed by the percent sign (%). Immediate values are generally
prefixed by the pound sign (#) or nothing at all.

@h Modifier
The @h modifier is used as a suffix for a symbol identifier to get the symbol’s addr
in halfwords

For example:
pfx %hi(foo@h)
movi %r4,%lo(foo@h)
jmp %r4
nop

foo:

or
GNUPro Toolkit User’s Guide for Altera Nios ■ 25

Reference

u

 of
e
ldc %r3,table
jmp %r3

table:

.nword foo@h

The @h modifier is required because jmp and call instructions all require addresses
that have been shifted to the right by 1 bit. Regular addresses also have to be honored
because storage accesses still use them, for example:
st [%r3],%r2

Thus, you need a way to refer to a symbol’s address in either format. The @h optional
suffix handles this.

%hi() gives the top 11 bits of a half-word, and %lo() gives the bottom 5 bits of a
half-word. %xhi() gives the top 11 bits of a full-word and %xlo() gives the bottom 5
bits of the top halfword.

For example, if you wanted to load r5 with -42:
pfx %hi(-42)
movi %r5,%lo(-42)

On a Nios-32 machine you have to load both the top and bottom halfwords so yo
have:
pfx %hi(-42)
movi %r5,%lo(-42)
pfx %xhi(-42)
movhi %r5,%xlo(-42)

Pseudo-ops
The pseudo-op .nword has been added. This pseudo-op means a native word-size
data. For Nios-16, it is two bytes, for Nios-32 it is four bytes. The native word-siz
should not be confused with a “word,” which is 4-bytes for both platforms.

The following is the pseudo-ops list (in addition to the standard list):
.word

4 bytes
.long

Same as .word
.half

2 bytes
.short

Same as .half
.nword

Same as .word for Nios-32, or same as .half for Nios-16
26 ■ User’s Guide for Altera Nios GNUPro Toolkit

Assembler
Data Alignment
.align x

Data is not aligned by default. The .align statement is required. The .align
keyword aligns to 2 raised to the power of x, where x is the variable specified. For
example
.align 3

aligns to an 8-byte word boundary

Condition Code Specifiers
The following cc_ codes were added for both the SKPS and IFS instructions. The
SKPS instruction “skips” the next instruction if the condition is true. The IFS
instruction performs the next instruction “if” the condition is true. The following
special variables have been added:
cc_eq

Check for equal
cc_z

Check for zero
cc_ne

Check for not equal
cc_nz

Check for not zero
cc_gt

Check for greater than
cc_ge

Check for greater than or equal
cc_lt

Check for less than
cc_le

Check for less than or equal
cc_ls

Check for less than same (unsigned comparison)
cc_hi

Check for higher than (unsigned comparison)
cc_mi

Check for negative
cc_n

Same as cc_mi
GNUPro Toolkit User’s Guide for Altera Nios ■ 27

Reference
cc_pl

Check for positive
cc_p

Same as cc_pl
cc_cc

Check for carry clear
cc_nc

Same as cc_cc
cc_cs

Check for carry set
cc_c

Same as cc_cs
cc_vc

Check for overflow clear
cc_nv

Same as cc_vc
cc_vs

Check for overflow set
cc_v

Same as cc_vs

Implementation
SKPS and IFS use opposite condition codes.

To implement a branch not equal to foo, enter either:
skps cc_eq
br foo

or
ifs cc_ne
br foo

To branch to foo on greater than or equal, enter either:
ifs cc_ge
br foo

or
skps cc_lt
br foo

A br never specifies @h (you are branching to foo).

Floating-point
Although the Nios has no hardware floating-point, the .float and .double directives
28 ■ User’s Guide for Altera Nios GNUPro Toolkit

Linker

 an

y the

 it is

y

side

r the
generate IEEE floating point numbers for compatibility with other development tools.

Opcodes
The assembler implements all the standard Nios opcodes.

Linker
This section describes Nios-specific features of the GNUPro Linker.

Nios Command Line Options
For a list of available generic linker options, refer to “Linker scripts” in Using ld in
GNUPro Utilities. There are no Nios-specific command line linker options.

Linker Script
The GNU Linker uses a linker script to determine how to process each section in
object file, and how to lay out the executable. The linker script is a declarative
program consisting of a number of directives. For instance, the ENTRY() directive
specifies the symbol in the executable that will be the executable’s entry point.

When building C or C++ executables to run under the simulator, you must specif
simulator linker script -Tsim.ld.

Because this linker script refers to the C, simulator-syscall, and the gcc libraries,
recommended that you link using the nios-elf-gcc command and specify -Tsim.ld.
The nios-elf-gcc command sets up the necessary library paths so that the librar
references are properly resolved. For example:
nios-elf-gcc -c -g -m32 foomain.c

nios-elf-gcc -c -g -m32 fooextra.c

nios-elf-gcc -g -m32 -Tsim.ld -0 foo foomain.o fooextra.o

There are actually two simulator links scripts: one for nios16 and the other for
nios32. The nios16 platform requires a special linker script because code may re
above the 64K line, whereas data must reside below 64K. The nios32 script is similar
to traditional elf linker scripts, where data such as the heap and stack, reside afte
code. When you use nios-elf-gcc and specify -Tsim.ld, the appropriate ld script is
used, based on the -m compiler option. Using -m16 (or defaulting) causes the nios16
version of sim.ld to be used. Using -m32 causes the nios32 version of sim.ld to be
used.

The nios16 linker script is located in nios-elf/lib/sim.ld. The nios32 linker
GNUPro Toolkit User’s Guide for Altera Nios ■ 29

Reference

 of
are.

d

he
script is located in nios-elf/lib/m32/sim.ld.

Debugger
This section describes Nios-specific features of the GNUPro Debugger. There are
three ways for GDB to debug programs for an Nios target.ration of the specific
evaluation board.

1. Simulator:
GDB’s built-in software simulation of the Nios processor allows the debugging
programs compiled for the Nios without requiring any access to actual hardw
To activate this mode in GDB type target sim. Then load the code into the
simulator by typing load and debug it in the normal fashion.

2. To download through the serial port, use the following GDB commands to loa
your program:
set remotebaud 38400
target remote port
load

First the baud rate is set to 38400 with the set remotebaud command. Then you
must connect GDB to the program using the target remote command. Here port
is the name of the serial port on your host. Then the program is loaded with t
load command.To continue execution of your program use the GDB continue
command, NOT the run command.

3. To download via ethernet, use the following GDB commands to load your
program:
target remote device_name:ethernet_port
load

First you must connect GDB to the program using the target remote command
using the above syntax. Then the program is loaded with the load command.To
continue execution of your program use the GDB continue command, NOT the
run command.

Nios Command Line Options
For the available generic debugger options, refer to Debugging with GDB in GNUPro
Debugging Tools. There are no Nios-specific debugger command line options.
30 ■ User’s Guide for Altera Nios GNUPro Toolkit

Simulator
Simulator
The following command can be used to start the simulator
nios-elf-run [-t] a.out

where -t causes a trace of the simulator to be output to a.out.
GNUPro Toolkit User’s Guide for Altera Nios ■ 31

Reference
32 ■ User’s Guide for Altera Nios GNUPro Toolkit

Bibliography

Getting Started with GNUPro Toolkit
(http://www.redhat.com/apps/support)

GNUPro Compiler Tools
(http://www.redhat.com/apps/support)

GNUPro Debugging Tools
(http://www.redhat.com/apps/support)

GNUPro Libraries
(http://www.redhat.com/apps/support)

GNUPro Utilities
(http://www.redhat.com/apps/support)

GNUPro Tools for Embedded Systems
(http://www.redhat.com/apps/support)

A

GNUPro Toolkit User’s Guide for Altera Nios ■ 33

Bibliography
34 ■ User’s Guide for Altera Nios GNUPro Toolkit

	User’s Guide for Altera�Nios™
	How to Contact Red�Hat

	Introduction
	Tool Naming Conventions
	Windows Environment Settings
	Case Sensitivity
	Toolkit Features
	Processor Version
	Targets Supported
	Hosts Supported
	Object File Format

	Tutorials
	Windows NT Operating System
	Create Source Code
	Compile, Assemble and Link from Source Code
	Run the Executable on the Stand-alone Simulator
	Run Under the Debugger
	Debug with the Built-in Simulator
	Assembler Listing from Source Code

	Solaris 2.5.1 Operating System
	Create Source Code
	Compile, Assemble and Link from Source Code
	Run the Executable on the Stand-alone Simulator
	Run Under the Debugger
	Debug with the Built-in Simulator
	Assembler Listing from Source Code

	Reference
	Compiler
	Nios Command Line Options
	Preprocessor Symbols
	Nios Attributes
	Limitations

	ABI Summary
	Data Type Sizes and Alignments
	Floating-point
	Registers
	Leaf Procedures
	Stack Frame
	Argument Passing
	Return Values

	Assembler
	Nios Command Line Options
	Syntax
	Special Characters
	Register Names
	Addressing Modes
	@h Modifier
	Pseudo-ops
	Data Alignment
	Condition Code Specifiers
	Implementation

	Floating-point
	Opcodes

	Linker
	Nios Command Line Options
	Linker Script

	Debugger
	Nios Command Line Options

	Simulator

	Bibliography

