
Altera Corporation 4–1
May 2006

4. SOPC Builder Components

Introduction This chapter describes in detail what an SOPC Builder component is.
SOPC Builder components are individual design blocks that SOPC
Builder uses to integrate a larger system module. Each component
consists of a structured set of files within a directory.

The files in a component directory serve the following purposes:

■ Defines the hardware interface to the component, such as the names
and types of I/O signals.

■ Declares any parameters that specify the structure of the component
logic and the component interface.

■ Describes a configuration wizard GUI for configuring the
component in SOPC Builder.

■ Provides scripts and other information SOPC Builder needs to
generate the component HDL and integrate the component into the
system module.

■ Contains component-related information, such as software drivers,
necessary for development steps downstream from SOPC Builder.

f For details on creating custom components, see the Developing SOPC
Builder Components chapter in Volume 4 of the Quartus II Handbook. For
details on the SOPC Builder component editor, see the Component Editor
chapter in Volume 4 of the Quartus II Handbook.

Sources of
Components

There are several sources for components, including the following:

■ The Quartus® II software, which includes SOPC Builder, installs a
number of components.

■ Altera® development kits, such as the Nios® II Development Kit,
provide SOPC Builder components as features.

■ Third-party developers provide SOPC Builder Ready components,
including component directories and documentation on how to use
the component.

■ You can package your own HDL files into a new, custom component,
using the SOPC Builder component editor.

1 While it is possible to write component files manually,
Altera strongly recommends you use the SOPC Builder
component editor to create custom components, for reasons
of consistency and forward compatibility.

QII54004-6.0.0

Avalon to External Bus Bridge

Preliminary

1 Core Overview

The Avalon to External Bus Bridge provides a simple interface for a peripheral device to connect to
the Avalon® Switch Fabric as a slave device. The bridge creates a bus-like interface to which one or
more “slave” peripherals can be connected.

2 Functional Description

Figure 1 shows a block diagram of the Avalon to External Bus Bridge and its connections to the
Avalon Switch Fabric and an external peripheral.

avalon_writedata

avalon_address

avalon_chipselect

avalon_read

avalon_write

avalon_irq

avalon_waitrequest

avalon_readdata

WriteData

Address

BusEnable

RW

IRQ

Acknowledge

ReadData

Avalon to

External
Bus
Bridge

Avalon
Switch
Fabric

External
Slave
Peripheral

Timeout
Control

Clock Reset

avalon_byteenable ByteEnable

Figure 1. Avalon to External Bus Bridge Block Diagram

The bus signals provided are:

• Address — k bits (up to 32). The address of the data to be transferred. The address is aligned
to the data size. For 32-bit data, the address bits Address1−0 are equal to 0. The byte-enable
signals can be used to transfer less than 4 bytes.

• BusEnable — 1 bit. Indicates that all other signals are valid, and a data transfer should occur.

• RW — 1 bit. Indicates whether the data transfer is a Read (1) or a Write (0) operation.

Altera Corporation - University Program

October 2006

1

http://www.altera.com/education/univ/unv-index.html

AVALON TO EXTERNAL BUS BRIDGE Preliminary

• ByteEnable — 16, 8, 4, 2 or 1 bits. Each bit indicates whether or not the corresponding byte
should be read or written. These signals are active high.

• WriteData — 128, 64, 32, 16 or 8 bits. The data to be written to the peripheral device during
a Write transfer.

• Acknowledge — 1 bit. Used by the peripheral device to indicate that it has completed the
data transfer.

• ReadData — 128, 64, 32, 16 or 8 bits. The data that is read from the peripheral device during
a Read transfer.

• IRQ — 1 bit. Used by the peripheral device to interrupt the Nios II processor.

The bus is synchronous – all bus signals to the peripheral device must be read on the rising edge of
the clock. To initiate a transfer, the Address, RW, ByteEnable and possibly WriteData signals are set
to the appropriate values. Then, the BusEnable signal is set to 1.

If the RW signal is 1, then the transfer is a Read operation and the peripheral device must set the
ReadData signals to the appropriate values and set the Acknowledge signal to 1. The Acknowledge
signal must remain at 1 for only one clock cycle. The ReadData signals must be constant while the
Acknowledge signal is being asserted. Note that the reason why the Acknowledge signal must be
high for exactly one clock cycle is that if this signal spans two or more cycles it may be interpreted
by the Avalon Switch Fabric as corresponding to another transaction.

If the RW signal is 0, then the transfer is a Write operation and the peripheral device should write
the value on the WriteData lines to the appropriate location. Once the peripheral device has com-
pleted the Write transfer, it must assert the Acknowledge signal for one clock cycle.

Figure 2 shows an example of the bridge that connects a Nios® II system implemented on Altera’s
DE2 Board to a slave peripheral.

The Avalon to External Bus Bridge contains a time-out mechanism. If the peripheral takes too
long to respond, the bridge will time out the communication so that the Avalon Switch Fabric will
not get stalled. The timing of the Avalon to External Bus Bridge is similar to the Avalon Switch
Fabric, and the user can refer to Avalon Switch Fabric Chapter in the Quartus II Manual or the
Avalon Interface Specification for more information. As signals are registered inside the Avalon to
External Bus Bridge, one clock cycle delay for write operations and a two clock cycle delay for read
operations will be introduced.

2 Altera Corporation - University Program

October 2006

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/education/univ/unv-index.html

AVALON TO EXTERNAL BUS BRIDGE Preliminary

DE2’s Avalon to

(a) External Bus Signals

(b) External Bus Timing Diagram

External Bus Bridge
Slave

Peripheral

Address k

BusEnable
R/W
ByteEnable
WriteData

Acknowledge
ReadData

16

2

16

Nios II System

Write AddressAddress k 1–() 0–

WriteData15 0–

ByteEnable1 0–

ReadData15 0–

Acknowledge

BusEnable

Clock

Read Address

Write Data

Read Data

R/W

IRQ

Figure 2. The Avalon to External Bus Bridge Signals

3 Instantiating the Core in SOPC Builder

Designers use the Avalon to External Bus Bridge’s configuration wizard in the SOPC Builder to spec-
ify the desired features. Two parameters need to be specified:

Data Width — The number of data bits involved in a transfer. The Bridge supports data widths of
8, 16, 32, 64 and 128 bits.

Address Range — The addressable space supported by the Bridge. It is possible to specify the
address range of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024, in either bytes, Kbytes or Mbytes.

■

Altera Corporation - University Program

October 2006

3

http://www.altera.com/education/univ/unv-index.html

	1 Core Overview
	2 Functional Description
	3 Instantiating the Core in SOPC Builder

