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8. UART Core

Core Overview The universal asynchronous receiver/transmitter core with Avalon® 
interface (UART core) implements a method to communicate serial 
character streams between an embedded system on an Altera® FPGA and 
an external device. The core implements the RS-232 protocol timing, and 
provides adjustable baud rate, parity, stop and data bits, and optional 
RTS/CTS flow control signals. The feature set is configurable, allowing 
designers to implement just the necessary functionality for a given 
system.

The core provides a simple register-mapped Avalon Memory-Mapped 
(Avalon-MM) slave interface that allows Avalon-MM master peripherals 
(such as a Nios® II processor) to communicate with the core simply by 
reading and writing control and data registers. 

The UART core is SOPC Builder-ready and integrates easily into any 
SOPC Builder-generated system. This chapter contains the following 
sections:

■ “Functional Description” on page 8–2
■ “Device and Tools Support” on page 8–4
■ “Instantiating the Core in SOPC Builder” on page 8–4
■ “Hardware Simulation Considerations” on page 8–9
■ “Software Programming Model” on page 8–9

NII51010-7.1.0



8–2  Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Functional 
Description

Figure 8–1 shows a block diagram of the UART core. 

Figure 8–1. Block Diagram of the UART Core in a Typical System

The core has two user-visible parts:

■ The register file, which is accessed via the Avalon-MM slave port
■ The RS-232 signals, RXD, TXD, CTS, and RTS

Avalon-MM Slave Interface and Registers

The UART core provides an Avalon-MM slave interface to the internal 
register file. The user interface to the UART core consists of six 16-bit 
registers: control, status, rxdata, txdata, divisor, and 
endofpacket. A master peripheral, such as a Nios II processor, accesses 
the registers to control the core and transfer data over the serial 
connection. 

The UART core provides an active-high interrupt request (IRQ) output 
that can request an interrupt when new data has been received, or when 
the core is ready to transmit another character. For further details see 
“Interrupt Behavior” on page 8–20. 
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The Avalon-MM slave port is capable of transfers with flow control. The 
UART core can be used in conjunction with a direct memory access 
(DMA) peripheral with Avalon-MM flow control to automate continuous 
data transfers between, for example, the UART core and memory. 

f See the Timer Core chapter for details. See the Avalon Memory-Mapped 
Interface Specification for details of the Avalon-MM interface.

RS-232 Interface

The UART core implements RS-232 asynchronous transmit and receive 
logic. The UART core sends and receives serial data via the TXD and RXD 
ports. The I/O buffers on most Altera FPGA families do not comply with 
RS-232 voltage levels, and may be damaged if driven directly by signals 
from an RS-232 connector. To comply with RS-232 voltage signaling 
specifications, an external level-shifting buffer is required (e.g., Maxim 
MAX3237) between the FPGA I/O pins and the external RS-232 
connector. 

The UART core uses a logic 0 for mark, and a logic 1 for space. An inverter 
inside the FPGA can be used to reverse the polarity of any of the RS-232 
signals, if necessary.

Transmitter Logic

The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register 
and a corresponding 7-, 8-, or 9-bit transmit shift register. Avalon-MM 
master peripherals write the txdata holding register via the 
Avalon-MM slave port. The transmit shift register is automatically 
loaded from the txdata register when a serial transmit shift operation is 
not currently in progress. The transmit shift register directly feeds the 
TXD output. Data is shifted out to TXD least-significant bit (LSB) first.

These two registers provide double buffering. A master peripheral can 
write a new value into the txdata register while the previously written 
character is being shifted out. The master peripheral can monitor the 
transmitter’s status by reading the status register’s transmitter ready 
(trdy), transmitter shift register empty (tmt), and transmitter overrun 
error (toe) bits.

The transmitter logic automatically inserts the correct number of start, 
stop, and parity bits in the serial TXD data stream as required by the 
RS-232 specification.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
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Receiver Logic

The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and 
a corresponding 7-, 8-, or 9-bit rxdata holding register. Avalon-MM 
master peripherals read the rxdata holding register via the Avalon-MM 
slave port. The rxdata holding register is loaded from the receiver shift 
register automatically every time a new character is fully received.

These two registers provide double buffering. The rxdata register can 
hold a previously received character while the subsequent character is 
being shifted into the receiver shift register.

A master peripheral can monitor the receiver’s status by reading the 
status register’s read-ready (rrdy), receiver-overrun error (roe), break 
detect (brk), parity error (pe), and framing error (fe) bits. The receiver 
logic automatically detects the correct number of start, stop, and parity 
bits in the serial RXD stream as required by the RS-232 specification. The 
receiver logic checks for four exceptional conditions in the received data 
(frame error, parity error, receive overrun error, and break), and sets 
corresponding status register bits (fe, pe, roe, or brk).

Baud Rate Generation

The UART core’s internal baud clock is derived from the Avalon-MM 
clock input. The internal baud clock is generated by a clock divider. The 
divisor value can come from one of the following sources:

■ A constant value specified at system generation time
■ The 16-bit value stored in the divisor register

The divisor register is an optional hardware feature. If it is disabled at 
system generation time, the divisor value is fixed, and the baud rate 
cannot be altered.

Device and 
Tools Support

The UART core can target all Altera FPGAs.

Instantiating the 
Core in SOPC 
Builder

Instantiating the UART in hardware creates at least two I/O ports for 
each UART core: An RXD input, and a TXD output. Optionally, the 
hardware may include flow control signals, the CTS input and RTS 
output.

Designers use the MegaWizard® interface for the UART core in SOPC 
Builder to configure the hardware feature set. The following sections 
describe the available options.
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Configuration Settings

This section describes the configuration settings.

Baud Rate Options

The UART core can implement any of the standard baud rates for RS-232 
connections. The baud rate can be configured in one of two ways:

■ Fixed rate—The baud rate is fixed at system generation time and 
cannot be changed via the Avalon-MM slave port.

■ Variable rate—The baud rate can vary, based on a clock divisor 
value held in the divisor register. A master peripheral changes the 
baud rate by writing new values to the divisor register. 

1 The baud rate is calculated based on the clock frequency 
provided by the Avalon-MM interface. Changing the system 
clock frequency in hardware without re-generating the UART 
core hardware will result in incorrect signaling.

Baud Rate (bps) Setting
The Baud Rate setting determines the default baud rate after reset. The 
Baud Rate option offers standard preset values (e.g., 9600, 57600, 115200 
bps), or you can manually enter any baud rate.

The baud rate value is used to calculate an appropriate clock divisor 
value to implement the desired baud rate. Baud rate and divisor values 
are related as follows:

divisor = int( (clock frequency)/(baud rate) + 0.5 )

baud rate = (clock frequency)/(divisor + 1)

Baud Rate Can Be Changed By Software Setting
When this setting is on, the hardware includes a 16-bit divisor register 
at address offset 4. The divisor register is writable, so the baud rate can 
be changed by writing a new value to this register.

When this setting is off, the UART hardware does not include a divisor 
register. The UART hardware implements a constant (unchangeable) 
baud divisor, and the value cannot be changed after system generation. 
In this case, writing to address offset 4 has no effect, and reading from 
address offset 4 produces an undefined result.
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Data Bits, Stop Bits, Parity

The UART core’s parity, data bits and stop bits are configurable. These 
settings are fixed at system generation time; they cannot be altered via the 
register file. The following settings are available.

Data Bits Setting
See Table 8–1.

Parity Setting
When Parity is set to None, the transmit logic sends data without 
including a parity bit, and the receive logic presumes the incoming data 
does not include a parity bit. When parity is None, the status register’s pe 
(parity error) bit is not implemented; it always reads 0. 

When Parity is set to Odd or Even, the transmit logic computes and 
inserts the required parity bit into the outgoing TXD bitstream, and the 
receive logic checks the parity bit in the incoming RXD bitstream. If the 
receiver finds data with incorrect parity, the status register’s pe is set to 1. 
When parity is Even, the parity bit is 0 if the character has an even number 
of 1 bits; otherwise the parity bit is 1. Similarly, when parity is Odd, the 
parity bit is 0 if the character has an odd number of 1 bits.

Flow Control

The following flow control option is available.

Include CTS/RTS pins & control register bits
When this setting is on, the UART hardware includes:

■ CTS_N (logic negative CTS) input port
■ RTS_N (logic negative RTS) output port
■ CTS bit in the status register

Table 8–1. Data Bits Setting

Setting Allowed Values Description

Data Bits 7, 8, 9 This setting determines the widths of the txdata, rxdata, and 
endofpacket registers.

Stop Bits 1, 2 This setting determines whether the core transmits 1 or 2 stop bits with every 
character. The core always terminates a receive transaction at the first stop 
bit, and ignores all subsequent stop bits, regardless of the Stop Bits setting.

Parity None, Even, Odd This setting determines whether the UART transmits characters with parity 
checking, and whether it expects received characters to have parity checking. 
See below for further details.
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■ DCTS bit in the status register
■ RTS bit in the control register
■ IDCTS bit in the control register

Based on these hardware facilities, an Avalon-MM master peripheral can 
detect CTS and transmit RTS flow control signals. The CTS input and RTS 
output ports are tied directly to bits in the status and control 
registers, and have no direct effect on any other part of the core.

When the Include CTS/RTS pins and control register bits setting is off, 
the core does not include the hardware listed above. The control/status 
bits CTS, DCTS, IDCTS, and RTS are not implemented; they always read 
as 0. 

Avalon-MM Transfers With Flow Control (DMA)

The UART core’s Avalon-MM interface optionally implements 
Avalon-MM transfers with flow control. This allows an Avalon-MM 
master peripheral to write data only when the UART core is ready to 
accept another character, and to read data only when the core has data 
available. The UART core can also optionally include the end-of-packet 
register.

Include end-of-packet register
When this setting is on, the UART core includes:

■ A 7-, 8-, or 9-bit endofpacket register at address-offset 5. The data 
width is determined by the Data Bits setting.

■ eop bit in the status register
■ ieop bit in the control register
■ endofpacket signal in the Avalon-MM interface to support data 

transfers with flow control to/from other master peripherals in the 
system 

End-of-packet (EOP) detection allows the UART core to terminate a data 
transaction with a Avalon-MM master with flow control. EOP detection 
can be used with a DMA controller, for example, to implement a UART 
that automatically writes received characters to memory until a specified 
character is encountered in the incoming RXD stream. The terminating 
(end of packet) character’s value is determined by the endofpacket 
register.

When the end-of-packet register is disabled, the UART core does not 
include the resources listed above. Writing to the endofpacket register 
has no effect, and reading produces an undefined value.
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Simulation Settings

When the UART core’s logic is generated, a simulation model is also 
constructed. The simulation model offers features to simplify and 
accelerate simulation of systems that use the UART core. Changes to the 
simulation settings do not affect the behavior of the UART core in 
hardware; the settings affect only functional simulation.

f For examples of how to use the following settings to simulate Nios II 
systems, refer to AN 351: Simulating Nios II Embedded Processor Designs. 

Simulated RXD-Input Character Stream

You can enter a character stream that will be simulated entering the RXD 
port upon simulated system reset. The UART core’s MegaWizard 
interface accepts an arbitrary character string, which is later incorporated 
into the UART simulation model. After reset in reset, the string is input 
into the RXD port character-by-character as the core is able to accept new 
data.

Prepare Interactive Windows

At system generation time, the UART core generator can create 
ModelSim macros that facilitate interaction with the UART model during 
simulation. The following options are available:

Create ModelSim Alias to open streaming output window
A ModelSim macro is created to open a window that displays all output 
from the TXD port.

Create ModelSim Alias to open interactive stimulus window
A ModelSim macro is created to open a window that accepts stimulus for 
the RXD port. The window sends any characters typed in the window to 
the RXD port.

Simulated Transmitter Baud Rate

RS-232 transmission rates are often slower than any other process in the 
system, and it is seldom useful to simulate the functional model at the 
true baud rate. For example, at 115,200 bps, it typically takes thousands 
of clock cycles to transfer a single character. The UART simulation model 
has the ability to run with a constant clock divisor of 2. This allows the 
simulated UART to transfer bits at half the system clock speed, or roughly 
one character per 20 clock cycles. You can choose one of the following 
options for the simulated transmitter baud rate:
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■ accelerated (use divisor = 2)—TXD emits one bit per 2 clock cycles in 
simulation.

■ actual (use true baud divisor)—TXD transmits at the actual baud 
rate, as determined by the divisor register.

Hardware 
Simulation 
Considerations

The simulation features were created for easy simulation of Nios, Nios II 
or Excalibur™ processor systems when using the ModelSim simulator. 
The documentation for each processor documents the suggested usage of 
these features. Other usages may be possible, but will require additional 
user effort to create a custom simulation process.

The simulation model is implemented in the UART core’s top-level HDL 
file; the synthesizable HDL and the simulation HDL are implemented in 
the same file. The simulation features are implemented using 
translate on and translate off synthesis directives that make 
certain sections of HDL code visible only to the synthesis tool. 

Do not edit the simulation directives if you are using Altera’s 
recommended simulation procedures. If you do change the simulation 
directives for your custom simulation flow, be aware that SOPC Builder 
overwrites existing files during system generation. Take precaution so 
that your changes are not overwritten.

f For details about simulating the UART core in Nios II processor systems 
see AN 351: Simulating Nios II Processor Designs. For details about 
simulating the UART core in Nios embedded processor systems see 
AN 189: Simulating Nios Embedded Processor Designs. 

Software 
Programming 
Model

The following sections describe the software programming model for the 
UART core, including the register map and software declarations to 
access the hardware. For Nios II processor users, Altera provides 
hardware abstraction layer (HAL) system library drivers that enable you 
to access the UART core using the ANSI C standard library functions, 
such as printf() and getchar(). 

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device 
driver that integrates into the HAL system library for Nios II systems. 
HAL users should access the UART via the familiar HAL API and the 
ANSI C standard library, rather than accessing the UART registers. 
ioctl() requests are defined that allow HAL users to control the 
hardware-dependent aspects of the UART.
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c If your program uses the HAL device driver to access the UART 
hardware, accessing the device registers directly will interfere 
with the correct behavior of the driver.

For Nios II processor users, the HAL system library API provides 
complete access to the UART core's features. Nios II programs treat the 
UART core as a character mode device, and send and receive data using 
the ANSI C standard library functions. 

The driver supports the CTS/RTS control signals when they are enabled 
in SOPC Builder. See “Driver Options: Fast Versus Small 
Implementations” on page 8–11. 

The following code demonstrates the simplest possible usage, printing a 
message to stdout using printf(). In this example, the SOPC Builder 
system contains a UART core, and the HAL system library has been 
configured to use this device for stdout.

Example: Printing Characters to a UART Core as stdout

#include <stdio.h>
int main ()
{
  printf("Hello world.\n");
  return 0;
}

The following code demonstrates reading characters from and sending 
messages to a UART device using the C standard library. In this example, 
the SOPC Builder system contains a UART core named uart1 that is not 
necessarily configured as the stdout device. In this case, the program 
treats the device like any other node in the HAL file system.

Example: Sending and Receiving Characters

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{
  char* msg = "Detected the character 't'.\n";
  FILE* fp;
  char prompt = 0;

  fp = fopen ("/dev/uart1", "r+"); //Open file for reading and writing
  if (fp)
  {
    while (prompt != 'v') 
    {  // Loop until we receive a 'v'.
      prompt = getc(fp);  // Get a character from the UART.
      if (prompt == 't')
      {  // Print a message if character is 't'.
        fwrite (msg, strlen (msg), 1, fp);
      }
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    }

    fprintf(fp, "Closing the UART file.\n");
    fclose (fp);
  }
  
  return 0;
}

The Nios II Software Developer's Handbook provides complete details of the 
HAL system library. 

Driver Options: Fast Versus Small Implementations

To accommodate the requirements of different types of systems, the 
UART driver provides two variants: A fast version and a small version. 
The fast behavior will be used by default. Both the fast and small drivers 
fully support the C standard library functions and the HAL API. 

The fast driver is an interrupt-driven implementation, which allows the 
processor to perform other tasks when the device is not ready to send or 
receive data. Because the UART data rate is slow compared to the 
processor, the fast driver can provide a large performance benefit for 
systems that could be performing other tasks in the interim. 

The small driver is a polled implementation that waits for the UART 
hardware before sending and receiving each character. There are two 
ways to enable the small footprint driver:

■ Enable the small footprint setting for the HAL system library project. 
This option affects device drivers for all devices in the system as well.

■ Specify the preprocessor option 
-DALTERA_AVALON_UART_SMALL. You can use this option if you 
want the small, polled implementation of the UART driver, but you 
do not want to affect the drivers for other devices.

f See the help system in the Nios II IDE for details about how to set HAL 
properties and preprocessor options. 

If the CTS/RTS flow control signals are enabled in hardware, the fast 
driver automatically uses them. The small driver always ignores them. 
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ioctl() Operations

The UART driver supports the ioctl() function to allow HAL-based 
programs to request device-specific operations. Table 8–2 defines 
operation requests that the UART driver supports.

Additional operation requests are also optionally available for the fast 
driver only, as shown in Table 8–3. To enable these operations in your 
program, you must set the preprocessor option 
-DALTERA_AVALON_UART_USE_IOCTL.

f Refer to the Nios II Software Developer's Handbook for details about the 
ioctl() function. 

Table 8–2. UART ioctl() Operations

Request Meaning

TIOCEXCL Locks the device for exclusive access. Further calls to 
open() for this device will fail until either this file descriptor 
is closed, or the lock is released using the TIOCNXCL 
ioctl request. For this request to succeed there can be no 
other existing file descriptors for this device. The ioctl 
"arg" parameter is ignored.

TIOCNXCL Releases a previous exclusive access lock. See the 
comments above for details. The ioctl "arg" parameter is 
ignored.

Table 8–3. Optional UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCMGET Returns the current configuration of the device by filling in 
the contents of the input termios (1) structure. A pointer to 
this structure is supplied as the value of the ioctl "opt" 
parameter.

TIOCMSET Sets the configuration of the device according to the values 
contained in the input termios structure (1). A pointer to this 
structure is supplied as the value of the ioctl "arg" 
parameter.

Note to Table 8–3:
(1) The termios structure is defined by the Newlib C standard library. You can find 

the definition in the file <Nios II EDS install 
path>/components/altera_hal/HAL/inc/sys/termios.h.
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Limitations

The HAL driver for the UART core does not support the endofpacket 
register. See “Register Map” for details. 

Software Files

The UART core is accompanied by the following software files. These 
files define the low-level interface to the hardware, and provide the HAL 
drivers. Application developers should not modify these files.

■ altera_avalon_uart_regs.h—This file defines the core’s register map, 
providing symbolic constants to access the low-level hardware. The 
symbols in this file are used only by device driver functions.

■ altera_avalon_uart.h, altera_avalon_uart.c—These files implement 
the UART core device driver for the HAL system library. 

Legacy SDK Routines

The UART core is also supported by the legacy SDK routines for the first-
generation Nios processor. For details about these routines, refer to the 
UART documentation that accompanied the first-generation Nios 
processor. For details about upgrading programs based on the legacy 
SDK to the HAL system library API, refer to AN 350: Upgrading Nios 
Processor Systems to the Nios II Processor. 

Register Map

Programmers using the HAL API or the legacy SDK for the first-
generation Nios processor never access the UART core directly via its 
registers. In general, the register map is only useful to programmers 
writing a device driver for the core.

c The Altera-provided HAL device driver accesses the device 
registers directly. If you are writing a device driver, and the 
HAL driver is active for the same device, your driver will 
conflict and fail to operate.
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Table 8–4 shows the register map for the UART core. Device drivers 
control and communicate with the core through the memory-mapped 
registers. 

Some registers and bits are optional. These registers and bits exists in 
hardware only if it was enabled at system generation time. Optional 
registers and bits are noted below.

rxdata Register

The rxdata register holds data received via the RXD input. When a new 
character is fully received via the RXD input, it is transferred into the 
rxdata register, and the status register’s rrdy bit is set to 1. The 
status register’s rrdy bit is set to 0 when the rxdata register is read. If 
a character is transferred into the rxdata register while the rrdy bit is 
already set (i.e., the previous character was not retrieved), a receiver-
overrun error occurs and the status register’s roe bit is set to 1. New 
characters are always transferred into the rxdata register, regardless of 
whether the previous character was read. Writing data to the rxdata 
register has no effect.

Table 8–4. UART Core Register Map

Offset Register 
Name R/W

Description/Register Bits

15 . . .13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata RO (1) (2) (2) Receive Data

1 txdata WO (1) (2) (2) Transmit Data

2 status (3) RW (1) eop cts dcts (1) e rrdy trdy tmt toe roe brk fe pe

3 control RW (1) ieop rts idcts trbk ie irrdy itrdy itmt itoe iroe ibrk ife ipe

4 divisor 
(4)

RW Baud Rate Divisor

5 endof-
packet (4)

RW (1) (2) (2) End-of-Packet Value

Notes to Table 8–4:
(1) These bits are reserved. Reading returns an undefined value. Write zero.
(2) These bits may or may not exist, depending on the Data Width hardware option. If they do not exist, they read 

zero, and writing has no effect. 
(3) Writing zero to the status register clears the dcts, e, toe, roe, brk, fe, and pe bits. 
(4) This register may or may not exist, depending on hardware configuration options. If it does not exist, reading 

returns an undefined value and writing has no effect. 
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txdata Register

Avalon-MM master peripherals write characters to be transmitted into 
the txdata register. Characters should not be written to txdata until 
the transmitter is ready for a new character, as indicated by the TRDY bit 
in the status register. The TRDY bit is set to 0 when a character is 
written into the txdata register. The TRDY bit is set to 1 when the 
character is transferred from the txdata register into the transmitter 
shift register. If a character is written to the txdata register when TRDY 
is 0, the result is undefined. Reading the txdata register returns an 
undefined value.

For example, assume the transmitter logic is idle and an Avalon-MM 
master peripheral writes a first character into the txdata register. The 
TRDY bit is set to 0, then set to 1 when the character is transferred into the 
transmitter shift register. The master can then write a second character 
into the txdata register, and the TRDY bit is set to 0 again. However, this 
time the shift register is still busy shifting out the first character to the TXD 
output. The TRDY bit is not set to 1 until the first character is fully shifted 
out and the second character is automatically transferred into the 
transmitter shift register. 

status Register

The status register consists of individual bits that indicate particular 
conditions inside the UART core. Each status bit is associated with a 
corresponding interrupt-enable bit in the control register. The status 
register can be read at any time. Reading does not change the value of any 
of the bits. Writing zero to the status register clears the DCTS, E, TOE, 
ROE, BRK, FE, and PE bits. 
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The status register bits are shown in Table 8–5.

Table 8–5. status Register Bits (Part 1 of 3)

Bit Bit 
Name

Read/ Write/ 
Clear Description

0 (1) PE RC Parity error. A parity error occurs when the received parity bit has an 
unexpected (incorrect) logic level. The PE bit is set to 1 when the core 
receives a character with an incorrect parity bit. The PE bit stays set to 1 until 
it is explicitly cleared by a write to the status register. When the PE bit is set, 
reading from the rxdata register produces an undefined value.

If the Parity hardware option is not enabled, no parity checking is performed 
and the PE bit always reads 0. See “Data Bits, Stop Bits, Parity” on 
page 8–6. 

1 FE RC Framing error. A framing error occurs when the receiver fails to detect a 
correct stop bit. The FE bit is set to 1 when the core receives a character with 
an incorrect stop bit. The FE bit stays set to 1 until it is explicitly cleared by 
a write to the status register. When the FE bit is set, reading from the 
rxdata register produces an undefined value.

2 BRK RC Break detect. The receiver logic detects a break when the RXD pin is held 
low (logic 0) continuously for longer than a full-character time (data bits, plus 
start, stop, and parity bits). When a break is detected, the BRK bit is set to 
1. The BRK bit stays set to 1 until it is explicitly cleared by a write to the 
status register.

3 ROE RC Receive overrun error. A receive-overrun error occurs when a newly 
received character is transferred into the rxdata holding register before 
the previous character is read (i.e., while the RRDY bit is 1). In this case, the 
ROE bit is set to 1, and the previous contents of rxdata are overwritten 
with the new character. The ROE bit stays set to 1 until it is explicitly cleared 
by a write to the status register.

4 TOE RC Transmit overrun error. A transmit-overrun error occurs when a new 
character is written to the txdata holding register before the previous 
character is transferred into the shift register (i.e., while the TRDY bit is 0). 
In this case the TOE bit is set to 1. The TOE bit stays set to 1 until it is 
explicitly cleared by a write to the status register.

5 TMT R Transmit empty. The TMT bit indicates the transmitter shift register’s current 
state. When the shift register is in the process of shifting a character out the 
TXD pin, TMT is set to 0. When the shift register is idle (i.e., a character is 
not being transmitted) the TMT bit is 1. An Avalon-MM master peripheral can 
determine if a transmission is completed (and received at the other end of a 
serial link) by checking the TMT bit. 
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6 TRDY R Transmit ready. The TRDY bit indicates the txdata holding register’s 
current state. When the txdata register is empty, it is ready for a new 
character, and trdy is 1. When the txdata register is full, TRDY is 0. An 
Avalon-MM master peripheral must wait for TRDY to be 1 before writing new 
data to txdata. 

7 RRDY R Receive character ready. The RRDY bit indicates the rxdata holding 
register’s current state. When the rxdata register is empty, it is not ready 
to be read and rrdy is 0. When a newly received value is transferred into the 
rxdata register, RRDY is set to 1. Reading the rxdata register clears 
the RRDY bit to 0. An Avalon-MM master peripheral must wait for RRDY to 
equal 1 before reading the rxdata register.

8 E RC Exception. The E bit indicates that an exception condition occurred. The E 
bit is a logical-OR of the TOE, ROE, BRK, FE, and PE bits. The e bit and its 
corresponding interrupt-enable bit (IE) bit in the control register provide 
a convenient method to enable/disable IRQs for all error conditions.

The E bit is set to 0 by a write operation to the status register.

10 (1) DCTS RC Change in clear to send (CTS) signal. The DCTS bit is set to 1 whenever a 
logic-level transition is detected on the CTS_N input port (sampled 
synchronously to the Avalon-MM clock). This bit is set by both falling and 
rising transitions on CTS_N. The DCTS bit stays set to 1 until it is explicitly 
cleared by a write to the status register.

If the Flow Control hardware option is not enabled, the DCTS bit always 
reads 0. See “Flow Control” on page 8–6. 

11 (1) CTS R Clear-to-send (CTS) signal. The CTS bit reflects the CTS_N input’s 
instantaneous state (sampled synchronously to the Avalon-MM clock). 
Because the CTS_N input is logic negative, the CTS bit is 1 when a 0 logic-
level is applied to the CTS_N input.

The CTS_N input has no effect on the transmit or receive processes. The 
only visible effect of the CTS_N input is the state of the CTS and DCTS bits, 
and an IRQ that can be generated when the control register’s idcts bit is 
enabled.

If the Flow Control hardware option is not enabled, the CTS bit always 
reads 0. See “Flow Control” on page 8–6. 

Table 8–5. status Register Bits (Part 2 of 3)

Bit Bit 
Name

Read/ Write/ 
Clear Description
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control Register

The control register consists of individual bits, each controlling an 
aspect of the UART core’s operation. The value in the control register 
can be read at any time.

Each bit in the control register enables an IRQ for a corresponding bit 
in the status register. When both a status bit and its corresponding 
interrupt-enable bit are 1, the core generates an IRQ. For example, the pe 
bit is bit 0 of the status register, and the ipe bit is bit 0 of the control 
register. An interrupt request is generated when both pe and ipe equal 1.

The control register bits are shown in Table 8–6. 

12 (1) EOP R End of packet encountered. The EOP bit is set to 1 by one of the following 
events:

● An EOP character is written to txdata
● An EOP character is read from rxdata

The EOP character is determined by the contents of the endofpacket 
register. The EOP bit stays set to 1 until it is explicitly cleared by a write to 
the status register.

If the Include End-of-Packet Register hardware option is not enabled, the 
EOP bit always reads 0. See “Avalon-MM Transfers With Flow Control 
(DMA)” on page 8–7.

Note to Table 8–5:
(1) This bit is optional and may not exist in hardware.

Table 8–5. status Register Bits (Part 3 of 3)

Bit Bit 
Name

Read/ Write/ 
Clear Description

Table 8–6. control Register Bits (Part 1 of 2)

Bit Bit Name Read/ 
Write Description

0 IPE RW Enable interrupt for a parity error.

1 IFE RW Enable interrupt for a framing error.

2 IBRK RW Enable interrupt for a break detect.

3 IROE RW Enable interrupt for a receiver overrun error.

4 ITOE RW Enable interrupt for a transmitter overrun error.

5 ITMT RW Enable interrupt for a transmitter shift register empty.
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divisor Register (Optional)

The value in the divisor register is used to generate the baud rate clock. 
The effective baud rate is determined by the formula:

Baud Rate = (Clock frequency) / (divisor + 1)

The divisor register is an optional hardware feature. If the Baud Rate 
Can Be Changed By Software hardware option is not enabled, then the 
divisor register does not exist. In this case, writing divisor has no 
effect, and reading divisor returns an undefined value. For more 
information see “Baud Rate Options” on page 8–5. 

endofpacket Register (Optional)

The value in the endofpacket register determines the end-of-packet 
character for variable-length DMA transactions. After reset, the default 
value is zero, which is the ASCII null character (\0). For more 
information, see Table 8–5 on page 8–16 for the description for the eop bit.

6 ITRDY RW Enable interrupt for a transmission ready.

7 IRRDY RW Enable interrupt for a read ready.

8 IE RW Enable interrupt for an exception.

9 TRBK RW Transmit break. The TRBK bit allows an Avalon-MM master peripheral to 
transmit a break character over the TXD output. The TXD signal is forced to 0 
when the TRBK bit is set to 1. The TRBK bit overrides any logic level that the 
transmitter logic would otherwise drive on the TXD output. The TRBK bit 
interferes with any transmission in process. The Avalon-MM master peripheral 
must set the TRBK bit back to 0 after an appropriate break period elapses.

10 IDCTS RW Enable interrupt for a change in CTS signal.

11 (1) RTS RW Request to send (RTS) signal. The RTS bit directly feeds the RTS_N output. 
An Avalon-MM master peripheral can write the RTS bit at any time. The value 
of the RTS bit only affects the RTS_N output; it has no effect on the transmitter 
or receiver logic. Because the RTS_N output is logic negative, when the RTS 
bit is 1, a low logic-level (0) is driven on the RTS_N output. 

If the Flow Control hardware option is not enabled, the RTS bit always reads 
0, and writing has no effect. See “Flow Control” on page 8–6. 

12 IEOP RW Enable interrupt for end-of-packet condition.

Note to Table 8–6:
(1) This bit is optional and may not exist in hardware.

Table 8–6. control Register Bits (Part 2 of 2)

Bit Bit Name Read/ 
Write Description
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The endofpacket register is an optional hardware feature. If the 
Include end-of-packet register hardware option is not enabled, then the 
endofpacket register does not exist. In this case, writing endofpacket 
has no effect, and reading returns an undefined value.

Interrupt Behavior

The UART core outputs a single IRQ signal to the Avalon-MM interface, 
which can connect to any master peripheral in the system, such as a Nios 
II processor. The master peripheral must read the status register to 
determine the cause of the interrupt. 

Every interrupt condition has an associated bit in the status register 
and an interrupt-enable bit in the control register. When any of the 
interrupt conditions occur, the associated status bit is set to 1 and 
remains set until it is explicitly acknowledged. The IRQ output is asserted 
when any of the status bits are set while the corresponding interrupt-
enable bit is 1. A master peripheral can acknowledge the IRQ by clearing 
the status register. 

At reset, all interrupt-enable bits are set to 0; therefore, the core cannot 
assert an IRQ until a master peripheral sets one or more of the interrupt-
enable bits to 1.

All possible interrupt conditions are listed with their associated status 
and control (interrupt-enable) bits in Table 6–5 on page 6–16 and 
Table 6–6 on page 6–18. Details of each interrupt condition are provided 
in the status bit descriptions.
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Revision History

Table 8–7 shows the revision history for this chapter.

Table 8–7. Document Revision History

Date and 
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Version
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v7.1.0
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● Added table of contents to Overview section.
● Added Referenced Documents section.

—
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v7.0.0

No change from previous release.
—
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v6.1.0

● Updated Avalon terminology because of changes to 
Avalon technologies. Changed old “Avalon interface” 
terms to “Avalon Memory-Mapped interface.”

● Corrected definition of even and odd parity in section 
“Data Bits, Stop Bits, Parity” on page 8–6.

For the 6.1 release, Altera 
released the Avalon Streaming 
interface, which necessitated 
some re-phrasing of existing 
Avalon terminology. Other 
changes to the document 
serve only to clarify existing 
behavior.

May 2006
v6.0.0

No change from previous release.
—

December 2005
v5.1.1

Changed Avalon “streaming” terminology to “flow control” 
based on a change to the Avalon Interface Specification. —

October 2005
v5.1.0

No change from previous release. 
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II 
Processor Reference Handbook.

—

September 2004
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Updates for Nios II 1.01 release.
—
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v1.0

Initial release.
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