
Altera Corporation 8–1
May 2007

8. UART Core

Core Overview The universal asynchronous receiver/transmitter core with Avalon®
interface (UART core) implements a method to communicate serial
character streams between an embedded system on an Altera® FPGA and
an external device. The core implements the RS-232 protocol timing, and
provides adjustable baud rate, parity, stop and data bits, and optional
RTS/CTS flow control signals. The feature set is configurable, allowing
designers to implement just the necessary functionality for a given
system.

The core provides a simple register-mapped Avalon Memory-Mapped
(Avalon-MM) slave interface that allows Avalon-MM master peripherals
(such as a Nios® II processor) to communicate with the core simply by
reading and writing control and data registers.

The UART core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. This chapter contains the following
sections:

■ “Functional Description” on page 8–2
■ “Device and Tools Support” on page 8–4
■ “Instantiating the Core in SOPC Builder” on page 8–4
■ “Hardware Simulation Considerations” on page 8–9
■ “Software Programming Model” on page 8–9

NII51010-7.1.0

8–2 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Functional
Description

Figure 8–1 shows a block diagram of the UART core.

Figure 8–1. Block Diagram of the UART Core in a Typical System

The core has two user-visible parts:

■ The register file, which is accessed via the Avalon-MM slave port
■ The RS-232 signals, RXD, TXD, CTS, and RTS

Avalon-MM Slave Interface and Registers

The UART core provides an Avalon-MM slave interface to the internal
register file. The user interface to the UART core consists of six 16-bit
registers: control, status, rxdata, txdata, divisor, and
endofpacket. A master peripheral, such as a Nios II processor, accesses
the registers to control the core and transfer data over the serial
connection.

The UART core provides an active-high interrupt request (IRQ) output
that can request an interrupt when new data has been received, or when
the core is ready to transmit another character. For further details see
“Interrupt Behavior” on page 8–20.

Altera FPGA

UART Core
baud rate divisor

shift register RXD

RTS

CTS

TXD L
ev

e
l

S
h

ift
e

r

R
S

 -
 2

32
C

on
ne

ct
or

Avalon-MM
 signals
connected
to on-chip
 logic

data

IRQ

dataavailable

readyfordata

endofpacket

address

clock

rxdata

status

control

txdata

endofpacket

shift register

divisor

Altera Corporation 8–3
May 2007

UART Core

The Avalon-MM slave port is capable of transfers with flow control. The
UART core can be used in conjunction with a direct memory access
(DMA) peripheral with Avalon-MM flow control to automate continuous
data transfers between, for example, the UART core and memory.

f See the Timer Core chapter for details. See the Avalon Memory-Mapped
Interface Specification for details of the Avalon-MM interface.

RS-232 Interface

The UART core implements RS-232 asynchronous transmit and receive
logic. The UART core sends and receives serial data via the TXD and RXD
ports. The I/O buffers on most Altera FPGA families do not comply with
RS-232 voltage levels, and may be damaged if driven directly by signals
from an RS-232 connector. To comply with RS-232 voltage signaling
specifications, an external level-shifting buffer is required (e.g., Maxim
MAX3237) between the FPGA I/O pins and the external RS-232
connector.

The UART core uses a logic 0 for mark, and a logic 1 for space. An inverter
inside the FPGA can be used to reverse the polarity of any of the RS-232
signals, if necessary.

Transmitter Logic

The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register
and a corresponding 7-, 8-, or 9-bit transmit shift register. Avalon-MM
master peripherals write the txdata holding register via the
Avalon-MM slave port. The transmit shift register is automatically
loaded from the txdata register when a serial transmit shift operation is
not currently in progress. The transmit shift register directly feeds the
TXD output. Data is shifted out to TXD least-significant bit (LSB) first.

These two registers provide double buffering. A master peripheral can
write a new value into the txdata register while the previously written
character is being shifted out. The master peripheral can monitor the
transmitter’s status by reading the status register’s transmitter ready
(trdy), transmitter shift register empty (tmt), and transmitter overrun
error (toe) bits.

The transmitter logic automatically inserts the correct number of start,
stop, and parity bits in the serial TXD data stream as required by the
RS-232 specification.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

8–4 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Receiver Logic

The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and
a corresponding 7-, 8-, or 9-bit rxdata holding register. Avalon-MM
master peripherals read the rxdata holding register via the Avalon-MM
slave port. The rxdata holding register is loaded from the receiver shift
register automatically every time a new character is fully received.

These two registers provide double buffering. The rxdata register can
hold a previously received character while the subsequent character is
being shifted into the receiver shift register.

A master peripheral can monitor the receiver’s status by reading the
status register’s read-ready (rrdy), receiver-overrun error (roe), break
detect (brk), parity error (pe), and framing error (fe) bits. The receiver
logic automatically detects the correct number of start, stop, and parity
bits in the serial RXD stream as required by the RS-232 specification. The
receiver logic checks for four exceptional conditions in the received data
(frame error, parity error, receive overrun error, and break), and sets
corresponding status register bits (fe, pe, roe, or brk).

Baud Rate Generation

The UART core’s internal baud clock is derived from the Avalon-MM
clock input. The internal baud clock is generated by a clock divider. The
divisor value can come from one of the following sources:

■ A constant value specified at system generation time
■ The 16-bit value stored in the divisor register

The divisor register is an optional hardware feature. If it is disabled at
system generation time, the divisor value is fixed, and the baud rate
cannot be altered.

Device and
Tools Support

The UART core can target all Altera FPGAs.

Instantiating the
Core in SOPC
Builder

Instantiating the UART in hardware creates at least two I/O ports for
each UART core: An RXD input, and a TXD output. Optionally, the
hardware may include flow control signals, the CTS input and RTS
output.

Designers use the MegaWizard® interface for the UART core in SOPC
Builder to configure the hardware feature set. The following sections
describe the available options.

Altera Corporation 8–5
May 2007

UART Core

Configuration Settings

This section describes the configuration settings.

Baud Rate Options

The UART core can implement any of the standard baud rates for RS-232
connections. The baud rate can be configured in one of two ways:

■ Fixed rate—The baud rate is fixed at system generation time and
cannot be changed via the Avalon-MM slave port.

■ Variable rate—The baud rate can vary, based on a clock divisor
value held in the divisor register. A master peripheral changes the
baud rate by writing new values to the divisor register.

1 The baud rate is calculated based on the clock frequency
provided by the Avalon-MM interface. Changing the system
clock frequency in hardware without re-generating the UART
core hardware will result in incorrect signaling.

Baud Rate (bps) Setting
The Baud Rate setting determines the default baud rate after reset. The
Baud Rate option offers standard preset values (e.g., 9600, 57600, 115200
bps), or you can manually enter any baud rate.

The baud rate value is used to calculate an appropriate clock divisor
value to implement the desired baud rate. Baud rate and divisor values
are related as follows:

divisor = int((clock frequency)/(baud rate) + 0.5)

baud rate = (clock frequency)/(divisor + 1)

Baud Rate Can Be Changed By Software Setting
When this setting is on, the hardware includes a 16-bit divisor register
at address offset 4. The divisor register is writable, so the baud rate can
be changed by writing a new value to this register.

When this setting is off, the UART hardware does not include a divisor
register. The UART hardware implements a constant (unchangeable)
baud divisor, and the value cannot be changed after system generation.
In this case, writing to address offset 4 has no effect, and reading from
address offset 4 produces an undefined result.

8–6 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Data Bits, Stop Bits, Parity

The UART core’s parity, data bits and stop bits are configurable. These
settings are fixed at system generation time; they cannot be altered via the
register file. The following settings are available.

Data Bits Setting
See Table 8–1.

Parity Setting
When Parity is set to None, the transmit logic sends data without
including a parity bit, and the receive logic presumes the incoming data
does not include a parity bit. When parity is None, the status register’s pe
(parity error) bit is not implemented; it always reads 0.

When Parity is set to Odd or Even, the transmit logic computes and
inserts the required parity bit into the outgoing TXD bitstream, and the
receive logic checks the parity bit in the incoming RXD bitstream. If the
receiver finds data with incorrect parity, the status register’s pe is set to 1.
When parity is Even, the parity bit is 0 if the character has an even number
of 1 bits; otherwise the parity bit is 1. Similarly, when parity is Odd, the
parity bit is 0 if the character has an odd number of 1 bits.

Flow Control

The following flow control option is available.

Include CTS/RTS pins & control register bits
When this setting is on, the UART hardware includes:

■ CTS_N (logic negative CTS) input port
■ RTS_N (logic negative RTS) output port
■ CTS bit in the status register

Table 8–1. Data Bits Setting

Setting Allowed Values Description

Data Bits 7, 8, 9 This setting determines the widths of the txdata, rxdata, and
endofpacket registers.

Stop Bits 1, 2 This setting determines whether the core transmits 1 or 2 stop bits with every
character. The core always terminates a receive transaction at the first stop
bit, and ignores all subsequent stop bits, regardless of the Stop Bits setting.

Parity None, Even, Odd This setting determines whether the UART transmits characters with parity
checking, and whether it expects received characters to have parity checking.
See below for further details.

Altera Corporation 8–7
May 2007

UART Core

■ DCTS bit in the status register
■ RTS bit in the control register
■ IDCTS bit in the control register

Based on these hardware facilities, an Avalon-MM master peripheral can
detect CTS and transmit RTS flow control signals. The CTS input and RTS
output ports are tied directly to bits in the status and control
registers, and have no direct effect on any other part of the core.

When the Include CTS/RTS pins and control register bits setting is off,
the core does not include the hardware listed above. The control/status
bits CTS, DCTS, IDCTS, and RTS are not implemented; they always read
as 0.

Avalon-MM Transfers With Flow Control (DMA)

The UART core’s Avalon-MM interface optionally implements
Avalon-MM transfers with flow control. This allows an Avalon-MM
master peripheral to write data only when the UART core is ready to
accept another character, and to read data only when the core has data
available. The UART core can also optionally include the end-of-packet
register.

Include end-of-packet register
When this setting is on, the UART core includes:

■ A 7-, 8-, or 9-bit endofpacket register at address-offset 5. The data
width is determined by the Data Bits setting.

■ eop bit in the status register
■ ieop bit in the control register
■ endofpacket signal in the Avalon-MM interface to support data

transfers with flow control to/from other master peripherals in the
system

End-of-packet (EOP) detection allows the UART core to terminate a data
transaction with a Avalon-MM master with flow control. EOP detection
can be used with a DMA controller, for example, to implement a UART
that automatically writes received characters to memory until a specified
character is encountered in the incoming RXD stream. The terminating
(end of packet) character’s value is determined by the endofpacket
register.

When the end-of-packet register is disabled, the UART core does not
include the resources listed above. Writing to the endofpacket register
has no effect, and reading produces an undefined value.

8–8 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Simulation Settings

When the UART core’s logic is generated, a simulation model is also
constructed. The simulation model offers features to simplify and
accelerate simulation of systems that use the UART core. Changes to the
simulation settings do not affect the behavior of the UART core in
hardware; the settings affect only functional simulation.

f For examples of how to use the following settings to simulate Nios II
systems, refer to AN 351: Simulating Nios II Embedded Processor Designs.

Simulated RXD-Input Character Stream

You can enter a character stream that will be simulated entering the RXD
port upon simulated system reset. The UART core’s MegaWizard
interface accepts an arbitrary character string, which is later incorporated
into the UART simulation model. After reset in reset, the string is input
into the RXD port character-by-character as the core is able to accept new
data.

Prepare Interactive Windows

At system generation time, the UART core generator can create
ModelSim macros that facilitate interaction with the UART model during
simulation. The following options are available:

Create ModelSim Alias to open streaming output window
A ModelSim macro is created to open a window that displays all output
from the TXD port.

Create ModelSim Alias to open interactive stimulus window
A ModelSim macro is created to open a window that accepts stimulus for
the RXD port. The window sends any characters typed in the window to
the RXD port.

Simulated Transmitter Baud Rate

RS-232 transmission rates are often slower than any other process in the
system, and it is seldom useful to simulate the functional model at the
true baud rate. For example, at 115,200 bps, it typically takes thousands
of clock cycles to transfer a single character. The UART simulation model
has the ability to run with a constant clock divisor of 2. This allows the
simulated UART to transfer bits at half the system clock speed, or roughly
one character per 20 clock cycles. You can choose one of the following
options for the simulated transmitter baud rate:

Altera Corporation 8–9
May 2007

UART Core

■ accelerated (use divisor = 2)—TXD emits one bit per 2 clock cycles in
simulation.

■ actual (use true baud divisor)—TXD transmits at the actual baud
rate, as determined by the divisor register.

Hardware
Simulation
Considerations

The simulation features were created for easy simulation of Nios, Nios II
or Excalibur™ processor systems when using the ModelSim simulator.
The documentation for each processor documents the suggested usage of
these features. Other usages may be possible, but will require additional
user effort to create a custom simulation process.

The simulation model is implemented in the UART core’s top-level HDL
file; the synthesizable HDL and the simulation HDL are implemented in
the same file. The simulation features are implemented using
translate on and translate off synthesis directives that make
certain sections of HDL code visible only to the synthesis tool.

Do not edit the simulation directives if you are using Altera’s
recommended simulation procedures. If you do change the simulation
directives for your custom simulation flow, be aware that SOPC Builder
overwrites existing files during system generation. Take precaution so
that your changes are not overwritten.

f For details about simulating the UART core in Nios II processor systems
see AN 351: Simulating Nios II Processor Designs. For details about
simulating the UART core in Nios embedded processor systems see
AN 189: Simulating Nios Embedded Processor Designs.

Software
Programming
Model

The following sections describe the software programming model for the
UART core, including the register map and software declarations to
access the hardware. For Nios II processor users, Altera provides
hardware abstraction layer (HAL) system library drivers that enable you
to access the UART core using the ANSI C standard library functions,
such as printf() and getchar().

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device
driver that integrates into the HAL system library for Nios II systems.
HAL users should access the UART via the familiar HAL API and the
ANSI C standard library, rather than accessing the UART registers.
ioctl() requests are defined that allow HAL users to control the
hardware-dependent aspects of the UART.

8–10 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

c If your program uses the HAL device driver to access the UART
hardware, accessing the device registers directly will interfere
with the correct behavior of the driver.

For Nios II processor users, the HAL system library API provides
complete access to the UART core's features. Nios II programs treat the
UART core as a character mode device, and send and receive data using
the ANSI C standard library functions.

The driver supports the CTS/RTS control signals when they are enabled
in SOPC Builder. See “Driver Options: Fast Versus Small
Implementations” on page 8–11.

The following code demonstrates the simplest possible usage, printing a
message to stdout using printf(). In this example, the SOPC Builder
system contains a UART core, and the HAL system library has been
configured to use this device for stdout.

Example: Printing Characters to a UART Core as stdout

#include <stdio.h>
int main ()
{
 printf("Hello world.\n");
 return 0;
}

The following code demonstrates reading characters from and sending
messages to a UART device using the C standard library. In this example,
the SOPC Builder system contains a UART core named uart1 that is not
necessarily configured as the stdout device. In this case, the program
treats the device like any other node in the HAL file system.

Example: Sending and Receiving Characters

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{
 char* msg = "Detected the character 't'.\n";
 FILE* fp;
 char prompt = 0;

 fp = fopen ("/dev/uart1", "r+"); //Open file for reading and writing
 if (fp)
 {
 while (prompt != 'v')
 { // Loop until we receive a 'v'.
 prompt = getc(fp); // Get a character from the UART.
 if (prompt == 't')
 { // Print a message if character is 't'.
 fwrite (msg, strlen (msg), 1, fp);
 }

Altera Corporation 8–11
May 2007

UART Core

 }

 fprintf(fp, "Closing the UART file.\n");
 fclose (fp);
 }

 return 0;
}

The Nios II Software Developer's Handbook provides complete details of the
HAL system library.

Driver Options: Fast Versus Small Implementations

To accommodate the requirements of different types of systems, the
UART driver provides two variants: A fast version and a small version.
The fast behavior will be used by default. Both the fast and small drivers
fully support the C standard library functions and the HAL API.

The fast driver is an interrupt-driven implementation, which allows the
processor to perform other tasks when the device is not ready to send or
receive data. Because the UART data rate is slow compared to the
processor, the fast driver can provide a large performance benefit for
systems that could be performing other tasks in the interim.

The small driver is a polled implementation that waits for the UART
hardware before sending and receiving each character. There are two
ways to enable the small footprint driver:

■ Enable the small footprint setting for the HAL system library project.
This option affects device drivers for all devices in the system as well.

■ Specify the preprocessor option
-DALTERA_AVALON_UART_SMALL. You can use this option if you
want the small, polled implementation of the UART driver, but you
do not want to affect the drivers for other devices.

f See the help system in the Nios II IDE for details about how to set HAL
properties and preprocessor options.

If the CTS/RTS flow control signals are enabled in hardware, the fast
driver automatically uses them. The small driver always ignores them.

8–12 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

ioctl() Operations

The UART driver supports the ioctl() function to allow HAL-based
programs to request device-specific operations. Table 8–2 defines
operation requests that the UART driver supports.

Additional operation requests are also optionally available for the fast
driver only, as shown in Table 8–3. To enable these operations in your
program, you must set the preprocessor option
-DALTERA_AVALON_UART_USE_IOCTL.

f Refer to the Nios II Software Developer's Handbook for details about the
ioctl() function.

Table 8–2. UART ioctl() Operations

Request Meaning

TIOCEXCL Locks the device for exclusive access. Further calls to
open() for this device will fail until either this file descriptor
is closed, or the lock is released using the TIOCNXCL
ioctl request. For this request to succeed there can be no
other existing file descriptors for this device. The ioctl
"arg" parameter is ignored.

TIOCNXCL Releases a previous exclusive access lock. See the
comments above for details. The ioctl "arg" parameter is
ignored.

Table 8–3. Optional UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCMGET Returns the current configuration of the device by filling in
the contents of the input termios (1) structure. A pointer to
this structure is supplied as the value of the ioctl "opt"
parameter.

TIOCMSET Sets the configuration of the device according to the values
contained in the input termios structure (1). A pointer to this
structure is supplied as the value of the ioctl "arg"
parameter.

Note to Table 8–3:
(1) The termios structure is defined by the Newlib C standard library. You can find

the definition in the file <Nios II EDS install
path>/components/altera_hal/HAL/inc/sys/termios.h.

Altera Corporation 8–13
May 2007

UART Core

Limitations

The HAL driver for the UART core does not support the endofpacket
register. See “Register Map” for details.

Software Files

The UART core is accompanied by the following software files. These
files define the low-level interface to the hardware, and provide the HAL
drivers. Application developers should not modify these files.

■ altera_avalon_uart_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware. The
symbols in this file are used only by device driver functions.

■ altera_avalon_uart.h, altera_avalon_uart.c—These files implement
the UART core device driver for the HAL system library.

Legacy SDK Routines

The UART core is also supported by the legacy SDK routines for the first-
generation Nios processor. For details about these routines, refer to the
UART documentation that accompanied the first-generation Nios
processor. For details about upgrading programs based on the legacy
SDK to the HAL system library API, refer to AN 350: Upgrading Nios
Processor Systems to the Nios II Processor.

Register Map

Programmers using the HAL API or the legacy SDK for the first-
generation Nios processor never access the UART core directly via its
registers. In general, the register map is only useful to programmers
writing a device driver for the core.

c The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate.

8–14 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

Table 8–4 shows the register map for the UART core. Device drivers
control and communicate with the core through the memory-mapped
registers.

Some registers and bits are optional. These registers and bits exists in
hardware only if it was enabled at system generation time. Optional
registers and bits are noted below.

rxdata Register

The rxdata register holds data received via the RXD input. When a new
character is fully received via the RXD input, it is transferred into the
rxdata register, and the status register’s rrdy bit is set to 1. The
status register’s rrdy bit is set to 0 when the rxdata register is read. If
a character is transferred into the rxdata register while the rrdy bit is
already set (i.e., the previous character was not retrieved), a receiver-
overrun error occurs and the status register’s roe bit is set to 1. New
characters are always transferred into the rxdata register, regardless of
whether the previous character was read. Writing data to the rxdata
register has no effect.

Table 8–4. UART Core Register Map

Offset Register
Name R/W

Description/Register Bits

15 . . .13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata RO (1) (2) (2) Receive Data

1 txdata WO (1) (2) (2) Transmit Data

2 status (3) RW (1) eop cts dcts (1) e rrdy trdy tmt toe roe brk fe pe

3 control RW (1) ieop rts idcts trbk ie irrdy itrdy itmt itoe iroe ibrk ife ipe

4 divisor
(4)

RW Baud Rate Divisor

5 endof-
packet (4)

RW (1) (2) (2) End-of-Packet Value

Notes to Table 8–4:
(1) These bits are reserved. Reading returns an undefined value. Write zero.
(2) These bits may or may not exist, depending on the Data Width hardware option. If they do not exist, they read

zero, and writing has no effect.
(3) Writing zero to the status register clears the dcts, e, toe, roe, brk, fe, and pe bits.
(4) This register may or may not exist, depending on hardware configuration options. If it does not exist, reading

returns an undefined value and writing has no effect.

Altera Corporation 8–15
May 2007

UART Core

txdata Register

Avalon-MM master peripherals write characters to be transmitted into
the txdata register. Characters should not be written to txdata until
the transmitter is ready for a new character, as indicated by the TRDY bit
in the status register. The TRDY bit is set to 0 when a character is
written into the txdata register. The TRDY bit is set to 1 when the
character is transferred from the txdata register into the transmitter
shift register. If a character is written to the txdata register when TRDY
is 0, the result is undefined. Reading the txdata register returns an
undefined value.

For example, assume the transmitter logic is idle and an Avalon-MM
master peripheral writes a first character into the txdata register. The
TRDY bit is set to 0, then set to 1 when the character is transferred into the
transmitter shift register. The master can then write a second character
into the txdata register, and the TRDY bit is set to 0 again. However, this
time the shift register is still busy shifting out the first character to the TXD
output. The TRDY bit is not set to 1 until the first character is fully shifted
out and the second character is automatically transferred into the
transmitter shift register.

status Register

The status register consists of individual bits that indicate particular
conditions inside the UART core. Each status bit is associated with a
corresponding interrupt-enable bit in the control register. The status
register can be read at any time. Reading does not change the value of any
of the bits. Writing zero to the status register clears the DCTS, E, TOE,
ROE, BRK, FE, and PE bits.

8–16 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

The status register bits are shown in Table 8–5.

Table 8–5. status Register Bits (Part 1 of 3)

Bit Bit
Name

Read/ Write/
Clear Description

0 (1) PE RC Parity error. A parity error occurs when the received parity bit has an
unexpected (incorrect) logic level. The PE bit is set to 1 when the core
receives a character with an incorrect parity bit. The PE bit stays set to 1 until
it is explicitly cleared by a write to the status register. When the PE bit is set,
reading from the rxdata register produces an undefined value.

If the Parity hardware option is not enabled, no parity checking is performed
and the PE bit always reads 0. See “Data Bits, Stop Bits, Parity” on
page 8–6.

1 FE RC Framing error. A framing error occurs when the receiver fails to detect a
correct stop bit. The FE bit is set to 1 when the core receives a character with
an incorrect stop bit. The FE bit stays set to 1 until it is explicitly cleared by
a write to the status register. When the FE bit is set, reading from the
rxdata register produces an undefined value.

2 BRK RC Break detect. The receiver logic detects a break when the RXD pin is held
low (logic 0) continuously for longer than a full-character time (data bits, plus
start, stop, and parity bits). When a break is detected, the BRK bit is set to
1. The BRK bit stays set to 1 until it is explicitly cleared by a write to the
status register.

3 ROE RC Receive overrun error. A receive-overrun error occurs when a newly
received character is transferred into the rxdata holding register before
the previous character is read (i.e., while the RRDY bit is 1). In this case, the
ROE bit is set to 1, and the previous contents of rxdata are overwritten
with the new character. The ROE bit stays set to 1 until it is explicitly cleared
by a write to the status register.

4 TOE RC Transmit overrun error. A transmit-overrun error occurs when a new
character is written to the txdata holding register before the previous
character is transferred into the shift register (i.e., while the TRDY bit is 0).
In this case the TOE bit is set to 1. The TOE bit stays set to 1 until it is
explicitly cleared by a write to the status register.

5 TMT R Transmit empty. The TMT bit indicates the transmitter shift register’s current
state. When the shift register is in the process of shifting a character out the
TXD pin, TMT is set to 0. When the shift register is idle (i.e., a character is
not being transmitted) the TMT bit is 1. An Avalon-MM master peripheral can
determine if a transmission is completed (and received at the other end of a
serial link) by checking the TMT bit.

Altera Corporation 8–17
May 2007

UART Core

6 TRDY R Transmit ready. The TRDY bit indicates the txdata holding register’s
current state. When the txdata register is empty, it is ready for a new
character, and trdy is 1. When the txdata register is full, TRDY is 0. An
Avalon-MM master peripheral must wait for TRDY to be 1 before writing new
data to txdata.

7 RRDY R Receive character ready. The RRDY bit indicates the rxdata holding
register’s current state. When the rxdata register is empty, it is not ready
to be read and rrdy is 0. When a newly received value is transferred into the
rxdata register, RRDY is set to 1. Reading the rxdata register clears
the RRDY bit to 0. An Avalon-MM master peripheral must wait for RRDY to
equal 1 before reading the rxdata register.

8 E RC Exception. The E bit indicates that an exception condition occurred. The E
bit is a logical-OR of the TOE, ROE, BRK, FE, and PE bits. The e bit and its
corresponding interrupt-enable bit (IE) bit in the control register provide
a convenient method to enable/disable IRQs for all error conditions.

The E bit is set to 0 by a write operation to the status register.

10 (1) DCTS RC Change in clear to send (CTS) signal. The DCTS bit is set to 1 whenever a
logic-level transition is detected on the CTS_N input port (sampled
synchronously to the Avalon-MM clock). This bit is set by both falling and
rising transitions on CTS_N. The DCTS bit stays set to 1 until it is explicitly
cleared by a write to the status register.

If the Flow Control hardware option is not enabled, the DCTS bit always
reads 0. See “Flow Control” on page 8–6.

11 (1) CTS R Clear-to-send (CTS) signal. The CTS bit reflects the CTS_N input’s
instantaneous state (sampled synchronously to the Avalon-MM clock).
Because the CTS_N input is logic negative, the CTS bit is 1 when a 0 logic-
level is applied to the CTS_N input.

The CTS_N input has no effect on the transmit or receive processes. The
only visible effect of the CTS_N input is the state of the CTS and DCTS bits,
and an IRQ that can be generated when the control register’s idcts bit is
enabled.

If the Flow Control hardware option is not enabled, the CTS bit always
reads 0. See “Flow Control” on page 8–6.

Table 8–5. status Register Bits (Part 2 of 3)

Bit Bit
Name

Read/ Write/
Clear Description

8–18 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

control Register

The control register consists of individual bits, each controlling an
aspect of the UART core’s operation. The value in the control register
can be read at any time.

Each bit in the control register enables an IRQ for a corresponding bit
in the status register. When both a status bit and its corresponding
interrupt-enable bit are 1, the core generates an IRQ. For example, the pe
bit is bit 0 of the status register, and the ipe bit is bit 0 of the control
register. An interrupt request is generated when both pe and ipe equal 1.

The control register bits are shown in Table 8–6.

12 (1) EOP R End of packet encountered. The EOP bit is set to 1 by one of the following
events:

● An EOP character is written to txdata
● An EOP character is read from rxdata

The EOP character is determined by the contents of the endofpacket
register. The EOP bit stays set to 1 until it is explicitly cleared by a write to
the status register.

If the Include End-of-Packet Register hardware option is not enabled, the
EOP bit always reads 0. See “Avalon-MM Transfers With Flow Control
(DMA)” on page 8–7.

Note to Table 8–5:
(1) This bit is optional and may not exist in hardware.

Table 8–5. status Register Bits (Part 3 of 3)

Bit Bit
Name

Read/ Write/
Clear Description

Table 8–6. control Register Bits (Part 1 of 2)

Bit Bit Name Read/
Write Description

0 IPE RW Enable interrupt for a parity error.

1 IFE RW Enable interrupt for a framing error.

2 IBRK RW Enable interrupt for a break detect.

3 IROE RW Enable interrupt for a receiver overrun error.

4 ITOE RW Enable interrupt for a transmitter overrun error.

5 ITMT RW Enable interrupt for a transmitter shift register empty.

Altera Corporation 8–19
May 2007

UART Core

divisor Register (Optional)

The value in the divisor register is used to generate the baud rate clock.
The effective baud rate is determined by the formula:

Baud Rate = (Clock frequency) / (divisor + 1)

The divisor register is an optional hardware feature. If the Baud Rate
Can Be Changed By Software hardware option is not enabled, then the
divisor register does not exist. In this case, writing divisor has no
effect, and reading divisor returns an undefined value. For more
information see “Baud Rate Options” on page 8–5.

endofpacket Register (Optional)

The value in the endofpacket register determines the end-of-packet
character for variable-length DMA transactions. After reset, the default
value is zero, which is the ASCII null character (\0). For more
information, see Table 8–5 on page 8–16 for the description for the eop bit.

6 ITRDY RW Enable interrupt for a transmission ready.

7 IRRDY RW Enable interrupt for a read ready.

8 IE RW Enable interrupt for an exception.

9 TRBK RW Transmit break. The TRBK bit allows an Avalon-MM master peripheral to
transmit a break character over the TXD output. The TXD signal is forced to 0
when the TRBK bit is set to 1. The TRBK bit overrides any logic level that the
transmitter logic would otherwise drive on the TXD output. The TRBK bit
interferes with any transmission in process. The Avalon-MM master peripheral
must set the TRBK bit back to 0 after an appropriate break period elapses.

10 IDCTS RW Enable interrupt for a change in CTS signal.

11 (1) RTS RW Request to send (RTS) signal. The RTS bit directly feeds the RTS_N output.
An Avalon-MM master peripheral can write the RTS bit at any time. The value
of the RTS bit only affects the RTS_N output; it has no effect on the transmitter
or receiver logic. Because the RTS_N output is logic negative, when the RTS
bit is 1, a low logic-level (0) is driven on the RTS_N output.

If the Flow Control hardware option is not enabled, the RTS bit always reads
0, and writing has no effect. See “Flow Control” on page 8–6.

12 IEOP RW Enable interrupt for end-of-packet condition.

Note to Table 8–6:
(1) This bit is optional and may not exist in hardware.

Table 8–6. control Register Bits (Part 2 of 2)

Bit Bit Name Read/
Write Description

8–20 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

The endofpacket register is an optional hardware feature. If the
Include end-of-packet register hardware option is not enabled, then the
endofpacket register does not exist. In this case, writing endofpacket
has no effect, and reading returns an undefined value.

Interrupt Behavior

The UART core outputs a single IRQ signal to the Avalon-MM interface,
which can connect to any master peripheral in the system, such as a Nios
II processor. The master peripheral must read the status register to
determine the cause of the interrupt.

Every interrupt condition has an associated bit in the status register
and an interrupt-enable bit in the control register. When any of the
interrupt conditions occur, the associated status bit is set to 1 and
remains set until it is explicitly acknowledged. The IRQ output is asserted
when any of the status bits are set while the corresponding interrupt-
enable bit is 1. A master peripheral can acknowledge the IRQ by clearing
the status register.

At reset, all interrupt-enable bits are set to 0; therefore, the core cannot
assert an IRQ until a master peripheral sets one or more of the interrupt-
enable bits to 1.

All possible interrupt conditions are listed with their associated status
and control (interrupt-enable) bits in Table 6–5 on page 6–16 and
Table 6–6 on page 6–18. Details of each interrupt condition are provided
in the status bit descriptions.

Referenced
Documents

This chapter references the following documents:

■ Nios II Software Developer’s Handbook
■ Timer Core chapter in volume 5 of the Quartus II Handbook
■ Avalon Memory-Mapped Interface Specification
■ AN 351: Simulating Nios II Processor Designs
■ AN 189: Simulating Nios Embedded Processor Designs

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an189.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Altera Corporation 8–21
May 2007

UART Core

Document
Revision History

Table 8–7 shows the revision history for this chapter.

Table 8–7. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

May 2007
v7.1.0

● Chapter 8 was formerly chapter 6.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to
Avalon technologies. Changed old “Avalon interface”
terms to “Avalon Memory-Mapped interface.”

● Corrected definition of even and odd parity in section
“Data Bits, Stop Bits, Parity” on page 8–6.

For the 6.1 release, Altera
released the Avalon Streaming
interface, which necessitated
some re-phrasing of existing
Avalon terminology. Other
changes to the document
serve only to clarify existing
behavior.

May 2006
v6.0.0

No change from previous release.
—

December 2005
v5.1.1

Changed Avalon “streaming” terminology to “flow control”
based on a change to the Avalon Interface Specification. —

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

8–22 Altera Corporation
May 2007

Quartus II Handbook, Volume 5

	8. UART Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface and Registers
	RS-232 Interface
	Transmitter Logic
	Receiver Logic
	Baud Rate Generation

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Configuration Settings
	Baud Rate Options
	Baud Rate (bps) Setting
	Baud Rate Can Be Changed By Software Setting

	Data Bits, Stop Bits, Parity
	Data Bits Setting
	Parity Setting

	Flow Control
	Include CTS/RTS pins & control register bits

	Avalon-MM Transfers With Flow Control (DMA)
	Include end-of-packet register

	Simulation Settings
	Simulated RXD-Input Character Stream
	Prepare Interactive Windows
	Create ModelSim Alias to open streaming output window
	Create ModelSim Alias to open interactive stimulus window

	Simulated Transmitter Baud Rate

	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Example: Printing Characters to a UART Core as stdout
	Example: Sending and Receiving Characters
	Driver Options: Fast Versus Small Implementations
	ioctl() Operations
	Limitations

	Software Files
	Legacy SDK Routines
	Register Map
	rxdata Register
	txdata Register
	status Register
	control Register
	divisor Register (Optional)
	endofpacket Register (Optional)

	Interrupt Behavior

	Referenced Documents
	Document Revision History

