
Altera Corporation 4–1
May 2006

4. SOPC Builder Components

Introduction This chapter describes in detail what an SOPC Builder component is.
SOPC Builder components are individual design blocks that SOPC
Builder uses to integrate a larger system module. Each component
consists of a structured set of files within a directory.

The files in a component directory serve the following purposes:

■ Defines the hardware interface to the component, such as the names
and types of I/O signals.

■ Declares any parameters that specify the structure of the component
logic and the component interface.

■ Describes a configuration wizard GUI for configuring the
component in SOPC Builder.

■ Provides scripts and other information SOPC Builder needs to
generate the component HDL and integrate the component into the
system module.

■ Contains component-related information, such as software drivers,
necessary for development steps downstream from SOPC Builder.

f For details on creating custom components, see the Developing SOPC
Builder Components chapter in Volume 4 of the Quartus II Handbook. For
details on the SOPC Builder component editor, see the Component Editor
chapter in Volume 4 of the Quartus II Handbook.

Sources of
Components

There are several sources for components, including the following:

■ The Quartus® II software, which includes SOPC Builder, installs a
number of components.

■ Altera® development kits, such as the Nios® II Development Kit,
provide SOPC Builder components as features.

■ Third-party developers provide SOPC Builder Ready components,
including component directories and documentation on how to use
the component.

■ You can package your own HDL files into a new, custom component,
using the SOPC Builder component editor.

1 While it is possible to write component files manually,
Altera strongly recommends you use the SOPC Builder
component editor to create custom components, for reasons
of consistency and forward compatibility.

QII54004-6.0.0

PS/2 Core for Altera
DE2/DE1 Boards

Preliminary

1 Core Overview

The PS/2 Serial Port on Altera DE2/DE1 boards is intended for connecting a keyboard or a mouse
to the board. The PS/2 Core provides a connection to the PS/2 Serial Port and presents an easy-to-
use communication interface to PS/2 peripherals.

2 Functional Description

The PS/2 Core handles the timing of the PS/2 Serial Data Transmission Protocol. A device driver
can communicate with it by reading/writing from/to its data and control registers.

3 Instantiating the Core in SOPC Builder

Designers can implement a PS/2 Core by using the SOPC Builder. There is no need to configure
the core. The core comes with a 256-word FIFO for storing data received from a PS/2 device.

4 Software Programming Model

4.1 Register Map

Device drivers control and communicate with the PS/2 Core through two 32-bit registers. Com-
munication with the PS/2 peripheral is done by writing or reading the registers through the Avalon
Slave Port. Table 1 shows the details for the registers.

Table 1. PS/2 Core Register Map
Offset Register

R/W/C
Bit Description

in bytes Name 31. . . 16 15. . . 11 10 9 8 7. . . 1 0
0 data R/W RAVAIL (1) DATA
4 control R/C (1) CE (1) RI (1) RE

Notes on Table 1:

(1) Reserved. Read values are undefined. Write zero.

Altera Corporation - University Program

October 2006

1

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.1.1 data Register

Table 2. data Register Bits
Bit Number Bit Name Read/Write/Clear Description

7. . . 0 DATA R/W The value to transfer to/from the PS/2 core. When
writing, the DATA field is interpreted as a command
to be sent to the PS/2 device. When reading, the DATA
field is data from the PS/2 device.

31. . . 16 RAVAIL R The number of data items remaining in the read FIFO
(including this read).

4.1.2 control Register

Table 3. control Register Bits
Bit Number Bit Name Read/Write/Clear Description

0 RE R/W Interrupt-enable bit for read interrupts.
8 RI R Indicates that a read interrupt is pending.

10 CE C Indicates that an error occurred while trying to send a
command to a PS/2 device.

4.2 Software Functions

The PS/2 Core is packaged with C-language functions accessible through the SOPC Builder-
generated software development kit (SDK) libraries, as listed below. These functions implement
common operations that users need for the PS/2 Core. When using the Altera Debug Client, these
functions are automatically provided for use in a C-language application program. They are pre-
sented in Secition 4.3. To use the functions, the C code must include the statement:

#include "alt_up_ps2_port.h"

In addition, some sample functions for specific communication with the keyboard or mouse are
also provided. They may serve as a good starting point if the user wishes to develop more features
with the PS/2 Port. To use the keyboard or mouse communication functions, the corresponding
header files, ps2_keyboard.h and ps2_mouse.h, have to be included. These functions are de-
scribed in Sections 4.4 and 4.5.

4.3 PS/2 Port Functions

4.3.1 enum PS2 DEVICE

The Enum type for PS/2 device type.

Enumerator:

PS2_MOUSE

PS2_KEYBOARD

PS2_UNKNOWN

2 Altera Corporation - University Program

October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.3.2 alt u32 read ctrl reg ()

Read the contents of the Control register for the PS/2 port.

Returns:

Register contents (32 bits, bits 10, 8 and 0 are used for CE, RI and RE respectively. Other bits
are reserved)

4.3.3 void write ctrl reg (alt u32 ctrl data)

Set the contents of the Control register.

Parameters:

ctrl_data – contents to be written into the Control register

4.3.4 alt u8 read RI bit (alt u32 ctrl reg)

Extract the RI (Read Interrupt) bit from the Control register.

Parameters:

ctrl_reg – the Control register

Returns:

8-bit number, where bit 0 is the value of the RI bit

4.3.5 alt u8 read RE bit (alt u32 ctrl reg)

Extract the RE (Read Interrupt Enable) bit from the Control register.

Parameters:

ctrl_reg – the Control register

Returns:

8-bit number, where bit 0 is the value of the RE bit

4.3.6 alt u8 read CE bit (alt u32 ctrl reg)

Extract the CE (Command Error) bit from the Control register.

Parameters:

ctrl_reg – the Control register

Returns:

8-bit number, where bit 0 is the value of the CE bit

Altera Corporation - University Program

October 2006

3

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.3.7 alt u32 read data reg ()

Read the contents of the Data register.

Returns:

32 bits of the Data register. Bits 31-16 indicate the number of available bytes in the FIFO (RA-
VAIL), bits 7-0 are the data received from the PS/2 device

4.3.8 alt u8 read data byte (alt u32 data reg)

Read the DATA byte from the Data register.

Parameters:

data_reg – Data register

Returns:

Bits 7-0 of the Data register

4.3.9 alt u16 read num bytes available (alt u32 data reg)

Find the number of bytes available to read in the FIFO buffer of the PS/2 port.

Parameters:

data_reg – the Data register

Returns:

The number represented by bits 31-16 of the Data register

4.3.10 PS2 DEVICE get mode ()

Check the PS/2 peripheral’s mode (whether it is a keyboard or a mouse).

Returns:

PS2_MOUSE for mouse, or PS2_KEYBOARD for keyboard

Note:

This operation will reset the PS/2 peripheral. Usually, it should be used only at the beginning
of a program.

4.3.11 void clear FIFO ()

Clear the FIFO’s contents.

4 Altera Corporation - University Program

October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.3.12 int wait for ack (unsigned timeout)

Wait for the acknowledge byte (0xFA) from the PS/2 peripheral.

Parameters:

timeout – the number of cycles of timeout

Returns:

PS2_SUCCESS on receving ACK signal, or PS2_TIMEOUT on timeout.

4.3.13 int write data byte (alt u8 byte)

Send a one-byte command to the PS/2 peripheral.

Parameters:

byte – the one-byte command to be sent

Returns:

PS2_ERROR if the CE bit of the Control register is set to 1, otherwise PS2_SUCCESS

4.3.14 int write data byte with ack (alt u8 byte, unsigned timeout)

Send a one-byte command to the PS/2 peripheral and wait for the ACK signal.

Parameters:

byte – the one-byte command to be sent. See alt_up_ps2_port_regs.h in the sdk directory
or any reference for the PS/2 protocol for details.

Returns:

PS2_ERROR if the CE bit of the Control register is set to 1, or PS2_TIMEOUT on timeout, or PS2_-
SUCCESS if the ACK signal is received before timeout

4.3.15 int read data byte with timeout (alt u8 ∗ byte, alt u32 time out)

Read the DATA byte from the PS/2 FIFO, using a user-defined timeout value.

Parameters:

byte – the byte read from the FIFO for the PS/2 Core

time_out – the user-defined timeout value. Setting time_out to 0 will disable the time-out
mechanism

Returns:

PS2_SUCCESS on reading data, or PS2_TIMEOUT on timeout

Altera Corporation - University Program

October 2006

5

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.4 PS/2 Keyboard Functions

4.4.1 enum KB CODE TYPE

The Enum type for the type of keyboard code received.

Enumerator:

KB_ASCII_MAKE_CODE — Make Code that corresponds to an ASCII character. For example,
the ASCII Make Code for letter A is 1C

KB_BINARY_MAKE_CODE — Make Code that corresponds to a non-ASCII character. For
example, the Binary (Non-ASCII) Make Code for Left Alt is 11

KB_LONG_BINARY_MAKE_CODE — Make Code that has two bytes (the first byte is E0). For
example, the Long Binary Make Code for Right Alt is "E0 11"

KB_BREAK_CODE — Normal Break Code that has two bytes (the first byte is F0). For exam-
ple, the Break Code for letter A is "F0 1C"

KB_LONG_BREAK_CODE — Long Break Code that has three bytes (the first two bytes are E0,
F0). For example, the Long Break Code for Right Alt is "E0 F0 11"

KB_INVALID_CODE — Codes that the decode FSM cannot decode

4.4.2 int read make code (KB CODE TYPE ∗ decode mode, alt u8 ∗ buf)

Get the make code of the key when a key is pressed.

Parameters:

decode_mode – indicates which type of code (Make Code, Break Code, etc.) is received from
the keyboard when the key is pressed

buf – points to the location that stores the make code of the key pressed

Note:

For KB_LONG_BINARY_MAKE_CODE and KB_BREAK_CODE, only the second byte is retured. For
KB_LONG_BREAK_CODE, only the third byte is returned

Returns:

PS2_TIMEOUT on timeout, or PS2_ERROR on error, otherwise PS2_SUCCESS

4.4.3 alt u32 set keyboard rate (alt u8 rate)

Set the repeat/delay rate of the keyboard.

Parameters:

rate – an 8-bit number that represents the repeat/delay rate of the keyboard

Returns:

PS2_SUCCESS on success, otherwise PS2_ERROR

6 Altera Corporation - University Program

October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.4.4 alt u32 reset keyboard ()

Send the reset command to the keyboard.

Returns:

PS2_SUCCESS on passing the BAT (Basic Assurance Test), otherwise PS2_ERROR

4.5 PS/2 Mouse Functions

4.5.1 alt u8 reset mouse ()

Reset the mouse.

Returns:

PS2_SUCCESS on BAT is passed, otherwise PS2_ERROR

4.5.2 int set mouse mode (alt u8 byte)

Set the operation mode of the mouse.

Parameters:

byte – the byte representing the mode (see macro definitions for details)

See also:

PS/2 Mouse document

Returns:

PS2_SUCCESS on receiving acknowledgment

Altera Corporation - University Program

October 2006

7

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.6 Sample Program

Below is a sample program that shows some usage of the provided functions.

/**

*

* A simple program that illustrates the usage of some sdk functions

of the

* PS/2 Port SDK

*

**/

#include <alt_types.h>

#include <stdio.h>

#include "alt_up_ps2_port.h"

#include "ps2_keyboard.h"

#include "ps2_mouse.h"

int main()

{

// clear the FIFO for the PS/2 port

clear_FIFO ();

DECODE_MODE decode_mode;

alt_u8 byte;

// get whether the PS/2 device is a keyboard or a mouse

PS2_DEVICE mode = get_mode ();

if (mode == PS2_KEYBOARD)

printf("%s", "KEYBOARD ...\n");

else if (mode == PS2_MOUSE)

printf("%s", "MOUSE ...\n");

if (mode == PS2_KEYBOARD)

{

alt_u8 key = 0;

int status = 0;

do{

// wait for the user's input and get the make code

status = get_make_code (& decode_mode , &key);

if (status == PS2_SUCCESS)

{

// print out the result

switch (decode_mode)

{

case KB_ASCII_MAKE_CODE:

printf("ASCII:\t%c\n", key);

break;

case KB_LONG_BINARY_MAKE_CODE:

printf("%s", "LONG");

//fall through

case KB_BINARY_MAKE_CODE:

8 Altera Corporation - University Program

October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

printf("MAKE CODE:\t%X\n", key);

break;

case KB_BREAK_CODE:

//do nothing

default:

break;

}

}

else

{

printf("Keyboard error\n");

}

} while (1);

}

else if (mode == PS2_MOUSE)

{

if (reset_mouse () == PS2_SUCCESS)

{

printf("MOUSE RESETTED ...\n");

}

if (set_mouse_mode(MOUSE_STREAM_MODE) == PS2_SUCCESS)

{

printf("Set Mouse to Stream mode ...\n");

}

}

return 0;

}

When compiling the C program in the Altera Debug Client, you may wish to use the -msmallc

option so that the Small newlib C Library is used to reduce the program size (See The HAL System
Library in the Nios® II Software Developer’s Handbook for details).

■

Altera Corporation - University Program

October 2006

9

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/education/univ/unv-index.html

	1 Core Overview
	2 Functional Description
	3 Instantiating the Core in SOPC Builder
	4 Software Programming Model
	4.1 Register Map
	4.1.1 data Register
	4.1.2 control Register

	4.2 Software Functions
	4.3 PS/2 Port Functions
	4.3.1 PS2_DEVICE
	4.3.2 read_ctrl_reg
	4.3.3 write_ctrl_reg
	4.3.4 read_RI_bit
	4.3.5 read_RE_bit
	4.3.6 read_CE_bit
	4.3.7 read_data_reg
	4.3.8 read_data_byte
	4.3.9 read_num_bytes_available
	4.3.10 get_mode
	4.3.11 clear_FIFO
	4.3.12 wait_for_ack
	4.3.13 write_data_byte
	4.3.14 write_data_byte_with_ack
	4.3.15 read_data_byte_with_timeout

	4.4 PS/2 Keyboard Functions
	4.4.1 KB_CODE_TYPE
	4.4.2 read_make_code
	4.4.3 set_keyboard_rate
	4.4.4 reset_keyboard

	4.5 PS/2 Mouse Functions
	4.5.1 reset_mouse
	4.5.2 set_mouse_mode

	4.6 Sample Program

