A I:l = A PS/2 Core for Altera
=N ® DE2/DE1 Boards

Preliminary

1 Core Overview
The PS/2 Serial Port on Altera DE2/DE1 boards is intended for connecting a keyboard or a mouse

to the board. The PS/2 Core provides a connection to the PS/2 Serial Port and presents an easy-to-
use communication interface to PS/2 peripherals.

2 Functional Description

The PS/2 Core handles the timing of the PS/2 Serial Data Transmission Protocol. A device driver
can communicate with it by reading/writing from/to its data and control registers.

3 Instantiating the Core in SOPC Builder

Designers can implement a PS/2 Core by using the SOPC Builder. There is no need to configure
the core. The core comes with a 256-word FIFO for storing data received from a PS/2 device.

4 Software Programming Model

4.1 Register Map

Device drivers control and communicate with the PS/2 Core through two 32-bit registers. Com-
munication with the PS/2 peripheral is done by writing or reading the registers through the Avalon
Slave Port. Table 1 shows the details for the registers.

Table 1. PS/2 Core Register Map
.Offset Register RIW/C Bit Description
inbytes | Name 31...16 [15...11 [10 [9 [8 [7...1] ©
0 data R/W | RAVAIL)] DATA
4 control | R/C (1) |CE| W [RI| @ |RE
Notes on Table 1:
(1) Reserved. Read values are undefined. Write zero.
Altera Corporation - University Program 1

October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

41.1 dataRegister

Table 2. data Register Bits

Bit Number | Bit Name | Read/Write/Clear | Description

7...0 DATA R/W The value to transfer to/from the PS/2 core. When
writing, the DATA field is interpreted as a command
to be sent to the PS/2 device. When reading, the DATA
field is data from the PS/2 device.

31...16 RAVAIL R The number of data items remaining in the read FIFO
(including this read).

41.2 control Register

Table 3. control Register Bits

Bit Number | Bit Name | Read/Write/Clear | Description

0 RE R/W Interrupt-enable bit for read interrupts.
8 RI R Indicates that a read interrupt is pending.
10 CE C Indicates that an error occurred while trying to send a

command to a PS/2 device.

4.2 Software Functions

The PS/2 Core is packaged with C-language functions accessible through the SOPC Builder-
generated software development kit (SDK) libraries, as listed below. These functions implement
common operations that users need for the PS/2 Core. When using the Altera Debug Client, these
functions are automatically provided for use in a C-language application program. They are pre-
sented in Secition 4.3. To use the functions, the C code must include the statement:

#include "alt_up_ps2_port.h"

In addition, some sample functions for specific communication with the keyboard or mouse are
also provided. They may serve as a good starting point if the user wishes to develop more features
with the PS/2 Port. To use the keyboard or mouse communication functions, the corresponding
header files, ps2_keyboard.h and ps2_mouse.h, have to be included. These functions are de-
scribed in Sections 4.4 and 4.5.

4.3 PS/2 Port Functions
4.3.1 enum PS2_DEVICE
The Enum type for PS/2 device type.

Enumerator:

PS2 MOUSE
PS2_KEYBOARD
PS2_ UNKNOWN

2 Altera Corporation - University Program
October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.3.2 alt_u32 read_ctrl_reg ()

Read the contents of the Control register for the PS/2 port.

Returns:

Register contents (32 bits, bits 10, 8 and 0 are used for CE, RI and RE respectively. Other bits
are reserved)

4.3.3 void write_ctrl_reg (alt_u32 cirl_data)
Set the contents of the Control register.

Parameters:

ctrl_data - contents to be written into the Control register
4.3.4 alt_u8 read_RI_bit (alt_u32 ctrl_reg)
Extract the RI (Read Interrupt) bit from the Control register.

Parameters:

ctrl_reg — the Control register

Returns:

8-bit number, where bit 0 is the value of the RI bit
4.3.5 alt_u8 read_RE bit (alt_u32 ctrl_reg)
Extract the RE (Read Interrupt Enable) bit from the Control register.

Parameters:

ctrl_reg — the Control register

Returns:

8-bit number, where bit 0 is the value of the RE bit
4.3.6 alt_u8 read_CE bit (alt_u32 ctrl_reg)
Extract the CE (Command Error) bit from the Control register.

Parameters:

ctrl_reg — the Control register
Returns:

8-bit number, where bit 0 is the value of the CE bit

Altera Corporation - University Program 3
October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.3.7 alt_u32 read_data_reg ()

Read the contents of the Data register.

Returns:

32 bits of the Data register. Bits 31-16 indicate the number of available bytes in the FIFO (RA-
VAIL), bits 7-0 are the data received from the PS/2 device

4.3.8 alt_u8 read_data_byte (alt_u32 data_reg)
Read the DATA byte from the Data register.

Parameters:

data_reg — Data register

Returns:

Bits 7-0 of the Data register

4.3.9 alt_u16 read_num_bytes_available (alt_u32 data_reg)

Find the number of bytes available to read in the FIFO buffer of the PS/2 port.

Parameters:

data_reg — the Data register

Returns:

The number represented by bits 31-16 of the Data register
4.3.10 PS2_DEVICE get_mode ()
Check the PS/2 peripheral’s mode (whether it is a keyboard or a mouse).

Returns:

PS2_MOUSE for mouse, or PS2_KEYBOARD for keyboard

Note:

This operation will reset the PS/2 peripheral. Usually, it should be used only at the beginning
of a program.

4.3.11 void clear_FIFO ()

Clear the FIFO’s contents.

4 Altera Corporation - University Program
October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.3.12 int wait_for_ack (unsigned timeout)
Wait for the acknowledge byte (0xFA) from the PS/2 peripheral.

Parameters:

timeout —the number of cycles of timeout

Returns:

PS2_SUCCESS on receving ACK signal, or PS2_TIMEOUT on timeout.

4.3.13 int write_data_byte (alt_u8 byte)
Send a one-byte command to the PS/2 peripheral.

Parameters:

byte —the one-byte command to be sent

Returns:

PS2_ERROR if the CE bit of the Control register is set to 1, otherwise PS2_SUCCESS

4.3.14 int write_data_byte_with_ack (alt_u8 byte, unsigned timeout)

Send a one-byte command to the PS/2 peripheral and wait for the ACK signal.

Parameters:
byte —the one-byte command to be sent. See alt_up_ps2_port_regs.h in the sdk directory
or any reference for the PS/2 protocol for details.
Returns:

PS2_ERROR if the CE bit of the Control register is set to 1, or PS2_TIMEQUT on timeout, or PS2_-
SUCCESS if the ACK signal is received before timeout

4.3.15 int read_data_byte_with_timeout (alt_u8 « byte, alt_u32 time_out)

Read the DATA byte from the PS/2 FIFO, using a user-defined timeout value.

Parameters:

byte - the byte read from the FIFO for the PS/2 Core

time_out - the user-defined timeout value. Setting time_out to 0 will disable the time-out
mechanism

Returns:

PS2_SUCCESS on reading data, or PS2_TIMEOUT on timeout

Altera Corporation - University Program 5
October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.4 PS/2 Keyboard Functions
4.4.1 enum KB_CODE_TYPE
The Enum type for the type of keyboard code received.

Enumerator:

KB_ASCII_MAKE_CODE — Make Code that corresponds to an ASCII character. For example,
the ASCII Make Code for letter A is 1C

KB _BINARY MAKE_CODE — Make Code that corresponds to a non-ASCII character. For
example, the Binary (Non-ASCII) Make Code for Left Altis 11

KB_LONG_BINARY _MAKE_CODE — Make Code that has two bytes (the first byte is E0). For
example, the Long Binary Make Code for Right Altis "E0 11"

KB_BREAK CODE — Normal Break Code that has two bytes (the first byte is F0). For exam-
ple, the Break Code for letter A is "FO 1C"

KB_LONG_BREAK_CODE — Long Break Code that has three bytes (the first two bytes are EO,
FO0). For example, the Long Break Code for Right Altis "EOF0 11"

KB _INVALID CODE — Codes that the decode FSM cannot decode

4.4.2 intread_make_code (KB_CODE TYPE = decode_mode, alt_u8 = buf)
Get the make code of the key when a key is pressed.

Parameters:

decode_mode - indicates which type of code (Make Code, Break Code, etc.) is received from
the keyboard when the key is pressed

buf - points to the location that stores the make code of the key pressed

Note:

For KB_LONG_BINARY_MAKE_CODE and KB_BREAK_CODE, only the second byte is retured. For
KB_LONG_BREAK_CODE, only the third byte is returned

Returns:

PS2_TIMEQUT on timeout, or PS2_ERROR on error, otherwise PS2_SUCCESS
4.4.3 alt_u32 set_keyboard rate (alt_u8 rate)
Set the repeat/delay rate of the keyboard.

Parameters:

rate — an 8-bit number that represents the repeat/delay rate of the keyboard
Returns:

PS2_SUCCESS on success, otherwise PS2_ ERROR

6 Altera Corporation - University Program
October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS

Preliminary

4.4.4 alt_u32 reset_keyboard ()

Send the reset command to the keyboard.

Returns:

PS2_SUCCESS on passing the BAT (Basic Assurance Test), otherwise PS2_ERROR

4.5 PS/2 Mouse Functions
451 alt_u8 reset_mouse ()
Reset the mouse.

Returns:

PS2_SUCCESS on BAT is passed, otherwise PS2_ERROR

4,52 int set_mouse_mode (alt_u8 byte)

Set the operation mode of the mouse.

Parameters:

byte - the byte representing the mode (see macro definitions for details)

See also:

PS/2 Mouse document

Returns:

PS2_SUCCESS on receiving acknowledgment

Altera Corporation - University Program
October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.6 Sample Program

Below is a sample program that shows some usage of the provided functions.

VAX:

*

* 4 simple program that illustrates the usage of some sdk functions

of the

* PS/2 Port SDK

*

* %/
#include <alt_types.h>
#include <stdio.h>
#include "alt_up_ps2_port.h"
#include "ps2_keyboard.h"
#include "ps2_mouse.h"

int main ()

{
// clear the FIF0 for the PS/2 port
clear _FIF0();
DECODE_MODE decode_mode;

alt_u8 byte;

// get whether the PS/2 device is a keyboard or a mouse
PS2_DEVICE mode = get_mode();

if (mode == PS2_KEYBOARD)
printf ("%s", "KEYBOARD...\n");
else if (mode == PS2_MOUSE)
printf ("%s", "MOUSE...\n");
if (mode == PS2_KEYBOARD)
{
alt_u8 key = 0;
int status = O0;

do{

// wait for the user’s input and get the make code
status = get_make_code(&decode_mode, &key);
if (status == PS2_SUCCESS)
{

// print out the result

switch (decode_mode)

{

case KB_ASCII_MAKE_CODE:
printf ("ASCII:\t%c\n", key);

break;
case KB_LONG_BINARY_MAKE_CODE:
printf ("%s", "LONG");

//fall through
case KB_BINARY_MAKE_CODE:

Altera Corporation - University Program
October 2006

http://www.altera.com/education/univ/unv-index.html

PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

printf ("MAKE CODE:\t%X\n", key);
break;

case KB_BREAK_CODE:
//do mothing

default:
break;
}
}
else
{
printf ("Keyboard error....\n");
}
} while (1);
}
else if (mode == PS2_MOUSE)
{
if (reset_mouse() == PS2_SUCCESS)
{
printf ("MOUSE RESETTED...\n");
}
if (set_mouse_mode (MOUSE_STREAM_MODE) == PS2_SUCCESS)
{
printf ("Set Mouse to Stream mode...\n");
}
}

return O;

When compiling the C program in the Altera Debug Client, you may wish to use the -msmallc
option so that the Small newlib C Library is used to reduce the program size (See The HAL System
Library in the Nios® II Software Developer’s Handbook for details).

Altera Corporation - University Program 9
October 2006

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/education/univ/unv-index.html

	1 Core Overview
	2 Functional Description
	3 Instantiating the Core in SOPC Builder
	4 Software Programming Model
	4.1 Register Map
	4.1.1 data Register
	4.1.2 control Register

	4.2 Software Functions
	4.3 PS/2 Port Functions
	4.3.1 PS2_DEVICE
	4.3.2 read_ctrl_reg
	4.3.3 write_ctrl_reg
	4.3.4 read_RI_bit
	4.3.5 read_RE_bit
	4.3.6 read_CE_bit
	4.3.7 read_data_reg
	4.3.8 read_data_byte
	4.3.9 read_num_bytes_available
	4.3.10 get_mode
	4.3.11 clear_FIFO
	4.3.12 wait_for_ack
	4.3.13 write_data_byte
	4.3.14 write_data_byte_with_ack
	4.3.15 read_data_byte_with_timeout

	4.4 PS/2 Keyboard Functions
	4.4.1 KB_CODE_TYPE
	4.4.2 read_make_code
	4.4.3 set_keyboard_rate
	4.4.4 reset_keyboard

	4.5 PS/2 Mouse Functions
	4.5.1 reset_mouse
	4.5.2 set_mouse_mode

	4.6 Sample Program

