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4. SOPC Builder Components

Introduction This chapter describes in detail what an SOPC Builder component is. 
SOPC Builder components are individual design blocks that SOPC 
Builder uses to integrate a larger system module. Each component 
consists of a structured set of files within a directory.

The files in a component directory serve the following purposes:

■ Defines the hardware interface to the component, such as the names 
and types of I/O signals.

■ Declares any parameters that specify the structure of the component 
logic and the component interface.

■ Describes a configuration wizard GUI for configuring the 
component in SOPC Builder.

■ Provides scripts and other information SOPC Builder needs to 
generate the component HDL and integrate the component into the 
system module.

■ Contains component-related information, such as software drivers, 
necessary for development steps downstream from SOPC Builder. 

f For details on creating custom components, see the Developing SOPC 
Builder Components chapter in Volume 4 of the Quartus II Handbook. For 
details on the SOPC Builder component editor, see the Component Editor 
chapter in Volume 4 of the Quartus II Handbook.

Sources of 
Components 

There are several sources for components, including the following:

■ The Quartus® II software, which includes SOPC Builder, installs a 
number of components. 

■ Altera® development kits, such as the Nios® II Development Kit, 
provide SOPC Builder components as features. 

■ Third-party developers provide SOPC Builder Ready components, 
including component directories and documentation on how to use 
the component. 

■ You can package your own HDL files into a new, custom component, 
using the SOPC Builder component editor. 

1 While it is possible to write component files manually, 
Altera strongly recommends you use the SOPC Builder 
component editor to create custom components, for reasons 
of consistency and forward compatibility. 
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1 Core Overview

The PS/2 Serial Port on Altera DE2/DE1 boards is intended for connecting a keyboard or a mouse
to the board. The PS/2 Core provides a connection to the PS/2 Serial Port and presents an easy-to-
use communication interface to PS/2 peripherals.

2 Functional Description

The PS/2 Core handles the timing of the PS/2 Serial Data Transmission Protocol. A device driver
can communicate with it by reading/writing from/to its data and control registers.

3 Instantiating the Core in SOPC Builder

Designers can implement a PS/2 Core by using the SOPC Builder. There is no need to configure
the core. The core comes with a 256-word FIFO for storing data received from a PS/2 device.

4 Software Programming Model

4.1 Register Map

Device drivers control and communicate with the PS/2 Core through two 32-bit registers. Com-
munication with the PS/2 peripheral is done by writing or reading the registers through the Avalon
Slave Port. Table 1 shows the details for the registers.

Table 1. PS/2 Core Register Map
Offset Register

R/W/C
Bit Description

in bytes Name 31. . . 16 15. . . 11 10 9 8 7. . . 1 0
0 data R/W RAVAIL (1) DATA
4 control R/C (1) CE (1) RI (1) RE

Notes on Table 1:

(1) Reserved. Read values are undefined. Write zero.
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4.1.1 data Register

Table 2. data Register Bits
Bit Number Bit Name Read/Write/Clear Description

7. . . 0 DATA R/W The value to transfer to/from the PS/2 core. When
writing, the DATA field is interpreted as a command
to be sent to the PS/2 device. When reading, the DATA
field is data from the PS/2 device.

31. . . 16 RAVAIL R The number of data items remaining in the read FIFO
(including this read).

4.1.2 control Register

Table 3. control Register Bits
Bit Number Bit Name Read/Write/Clear Description

0 RE R/W Interrupt-enable bit for read interrupts.
8 RI R Indicates that a read interrupt is pending.

10 CE C Indicates that an error occurred while trying to send a
command to a PS/2 device.

4.2 Software Functions

The PS/2 Core is packaged with C-language functions accessible through the SOPC Builder-
generated software development kit (SDK) libraries, as listed below. These functions implement
common operations that users need for the PS/2 Core. When using the Altera Debug Client, these
functions are automatically provided for use in a C-language application program. They are pre-
sented in Secition 4.3. To use the functions, the C code must include the statement:

#include "alt_up_ps2_port.h"

In addition, some sample functions for specific communication with the keyboard or mouse are
also provided. They may serve as a good starting point if the user wishes to develop more features
with the PS/2 Port. To use the keyboard or mouse communication functions, the corresponding
header files, ps2_keyboard.h and ps2_mouse.h, have to be included. These functions are de-
scribed in Sections 4.4 and 4.5.

4.3 PS/2 Port Functions

4.3.1 enum PS2 DEVICE

The Enum type for PS/2 device type.

Enumerator:

PS2_MOUSE

PS2_KEYBOARD

PS2_UNKNOWN
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4.3.2 alt u32 read ctrl reg ()

Read the contents of the Control register for the PS/2 port.

Returns:

Register contents (32 bits, bits 10, 8 and 0 are used for CE, RI and RE respectively. Other bits
are reserved)

4.3.3 void write ctrl reg (alt u32 ctrl data)

Set the contents of the Control register.

Parameters:

ctrl_data – contents to be written into the Control register

4.3.4 alt u8 read RI bit (alt u32 ctrl reg)

Extract the RI (Read Interrupt) bit from the Control register.

Parameters:

ctrl_reg – the Control register

Returns:

8-bit number, where bit 0 is the value of the RI bit

4.3.5 alt u8 read RE bit (alt u32 ctrl reg)

Extract the RE (Read Interrupt Enable) bit from the Control register.

Parameters:

ctrl_reg – the Control register

Returns:

8-bit number, where bit 0 is the value of the RE bit

4.3.6 alt u8 read CE bit (alt u32 ctrl reg)

Extract the CE (Command Error) bit from the Control register.

Parameters:

ctrl_reg – the Control register

Returns:

8-bit number, where bit 0 is the value of the CE bit

Altera Corporation - University Program

October 2006

3

http://www.altera.com/education/univ/unv-index.html


PS/2 CORE FOR ALTERA DE2/DE1 BOARDS Preliminary

4.3.7 alt u32 read data reg ()

Read the contents of the Data register.

Returns:

32 bits of the Data register. Bits 31-16 indicate the number of available bytes in the FIFO (RA-
VAIL), bits 7-0 are the data received from the PS/2 device

4.3.8 alt u8 read data byte (alt u32 data reg)

Read the DATA byte from the Data register.

Parameters:

data_reg – Data register

Returns:

Bits 7-0 of the Data register

4.3.9 alt u16 read num bytes available (alt u32 data reg)

Find the number of bytes available to read in the FIFO buffer of the PS/2 port.

Parameters:

data_reg – the Data register

Returns:

The number represented by bits 31-16 of the Data register

4.3.10 PS2 DEVICE get mode ()

Check the PS/2 peripheral’s mode (whether it is a keyboard or a mouse).

Returns:

PS2_MOUSE for mouse, or PS2_KEYBOARD for keyboard

Note:

This operation will reset the PS/2 peripheral. Usually, it should be used only at the beginning
of a program.

4.3.11 void clear FIFO ()

Clear the FIFO’s contents.
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4.3.12 int wait for ack (unsigned timeout)

Wait for the acknowledge byte (0xFA) from the PS/2 peripheral.

Parameters:

timeout – the number of cycles of timeout

Returns:

PS2_SUCCESS on receving ACK signal, or PS2_TIMEOUT on timeout.

4.3.13 int write data byte (alt u8 byte)

Send a one-byte command to the PS/2 peripheral.

Parameters:

byte – the one-byte command to be sent

Returns:

PS2_ERROR if the CE bit of the Control register is set to 1, otherwise PS2_SUCCESS

4.3.14 int write data byte with ack (alt u8 byte, unsigned timeout)

Send a one-byte command to the PS/2 peripheral and wait for the ACK signal.

Parameters:

byte – the one-byte command to be sent. See alt_up_ps2_port_regs.h in the sdk directory
or any reference for the PS/2 protocol for details.

Returns:

PS2_ERROR if the CE bit of the Control register is set to 1, or PS2_TIMEOUT on timeout, or PS2_-
SUCCESS if the ACK signal is received before timeout

4.3.15 int read data byte with timeout (alt u8 ∗ byte, alt u32 time out)

Read the DATA byte from the PS/2 FIFO, using a user-defined timeout value.

Parameters:

byte – the byte read from the FIFO for the PS/2 Core

time_out – the user-defined timeout value. Setting time_out to 0 will disable the time-out
mechanism

Returns:

PS2_SUCCESS on reading data, or PS2_TIMEOUT on timeout
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4.4 PS/2 Keyboard Functions

4.4.1 enum KB CODE TYPE

The Enum type for the type of keyboard code received.

Enumerator:

KB_ASCII_MAKE_CODE — Make Code that corresponds to an ASCII character. For example,
the ASCII Make Code for letter A is 1C

KB_BINARY_MAKE_CODE — Make Code that corresponds to a non-ASCII character. For
example, the Binary (Non-ASCII) Make Code for Left Alt is 11

KB_LONG_BINARY_MAKE_CODE — Make Code that has two bytes (the first byte is E0). For
example, the Long Binary Make Code for Right Alt is "E0 11"

KB_BREAK_CODE — Normal Break Code that has two bytes (the first byte is F0). For exam-
ple, the Break Code for letter A is "F0 1C"

KB_LONG_BREAK_CODE — Long Break Code that has three bytes (the first two bytes are E0,
F0). For example, the Long Break Code for Right Alt is "E0 F0 11"

KB_INVALID_CODE — Codes that the decode FSM cannot decode

4.4.2 int read make code (KB CODE TYPE ∗ decode mode, alt u8 ∗ buf)

Get the make code of the key when a key is pressed.

Parameters:

decode_mode – indicates which type of code (Make Code, Break Code, etc.) is received from
the keyboard when the key is pressed

buf – points to the location that stores the make code of the key pressed

Note:

For KB_LONG_BINARY_MAKE_CODE and KB_BREAK_CODE, only the second byte is retured. For
KB_LONG_BREAK_CODE, only the third byte is returned

Returns:

PS2_TIMEOUT on timeout, or PS2_ERROR on error, otherwise PS2_SUCCESS

4.4.3 alt u32 set keyboard rate (alt u8 rate)

Set the repeat/delay rate of the keyboard.

Parameters:

rate – an 8-bit number that represents the repeat/delay rate of the keyboard

Returns:

PS2_SUCCESS on success, otherwise PS2_ERROR
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4.4.4 alt u32 reset keyboard ()

Send the reset command to the keyboard.

Returns:

PS2_SUCCESS on passing the BAT (Basic Assurance Test), otherwise PS2_ERROR

4.5 PS/2 Mouse Functions

4.5.1 alt u8 reset mouse ()

Reset the mouse.

Returns:

PS2_SUCCESS on BAT is passed, otherwise PS2_ERROR

4.5.2 int set mouse mode (alt u8 byte)

Set the operation mode of the mouse.

Parameters:

byte – the byte representing the mode (see macro definitions for details)

See also:

PS/2 Mouse document

Returns:

PS2_SUCCESS on receiving acknowledgment
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4.6 Sample Program

Below is a sample program that shows some usage of the provided functions.

/**

*

* A simple program that illustrates the usage of some sdk functions

of the

* PS/2 Port SDK

*

**/

#include <alt_types.h>

#include <stdio.h>

#include "alt_up_ps2_port.h"

#include "ps2_keyboard.h"

#include "ps2_mouse.h"

int main()

{

// clear the FIFO for the PS/2 port

clear_FIFO ();

DECODE_MODE decode_mode;

alt_u8 byte;

// get whether the PS/2 device is a keyboard or a mouse

PS2_DEVICE mode = get_mode ();

if (mode == PS2_KEYBOARD)

printf("%s", "KEYBOARD ...\n");

else if (mode == PS2_MOUSE)

printf("%s", "MOUSE ...\n");

if ( mode == PS2_KEYBOARD)

{

alt_u8 key = 0;

int status = 0;

do{

// wait for the user's input and get the make code

status = get_make_code (& decode_mode , &key);

if (status == PS2_SUCCESS)

{

// print out the result

switch (decode_mode)

{

case KB_ASCII_MAKE_CODE:

printf("ASCII:\t%c\n", key);

break;

case KB_LONG_BINARY_MAKE_CODE:

printf("%s", "LONG");

//fall through

case KB_BINARY_MAKE_CODE:
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printf("MAKE CODE:\t%X\n", key);

break;

case KB_BREAK_CODE:

//do nothing

default:

break;

}

}

else

{

printf("Keyboard error ....\n");

}

} while (1);

}

else if ( mode == PS2_MOUSE )

{

if (reset_mouse () == PS2_SUCCESS)

{

printf("MOUSE RESETTED ...\n");

}

if (set_mouse_mode(MOUSE_STREAM_MODE) == PS2_SUCCESS)

{

printf("Set Mouse to Stream mode ...\n");

}

}

return 0;

}

When compiling the C program in the Altera Debug Client, you may wish to use the -msmallc

option so that the Small newlib C Library is used to reduce the program size (See The HAL System
Library in the Nios® II Software Developer’s Handbook for details).

■
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