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3. Programming Model
Introduction
This chapter describes the Nios® II programming model, covering processor features 
at the assembly language level. Fully understanding the contents of this chapter 
requires prior knowledge of computer architecture, operating systems, virtual 
memory and memory management, software processes and process management, 
exception handling, and instruction sets. This chapter assumes you have a detailed 
understanding of the aforementioned concepts and focuses on how these concepts are 
specifically implemented in the Nios II processor. Where possible, this chapter uses 
industry-standard terminology.

This chapter discusses the following topics from the system programmer’s 
perspective:

■ Operating modes, page 3–2—Defines the relationships between executable code 
and memory.

■ Memory management unit (MMU), page 3–3—Describes virtual memory support 
for full-featured operating systems.

■ Memory protection unit (MPU), page 3–8—Describes memory protection without 
virtual memory management.

■ General-purpose registers, page 3–10—Describes the Nios II general register set.

■ Control registers, page 3–11—Describes the Nios II control register set.

■ Exception processing, page 3–25—Describes how the Nios II processor responds 
to exceptions.

■ Processor reset state, page 3–27—Describes how the Nios II processor responds to 
a processor reset signal.

■ Hardware-assisted debug processing, page 3–28—Describes how the Nios II 
processor responds to break exceptions.

■ Hardware interrupts, page 3–29—Describes how the Nios II processor responds to 
hardware interrupts.

■ Memory, cache memory, and peripheral organization, page 3–38—Describes how 
the Nios II processor interfaces with memory and peripherals.

■ Instruction set categories, page 3–40—Introduces the Nios II instruction set.

■ Custom instructions, page 3–44—Describes the scope of Nios II custom 
instructions.

1 Because of the flexibility and capability range of the Nios II processor, this 
chapter covers topics that support a variety of operating systems and 
runtime environments. While reading, be aware that all sections might not 
apply to you. For example, if you are using a minimal system runtime 
environment, you can skip the sections covering operating modes, the 
MMU, the MPU, or the control registers exclusively used by the MMU and 
MPU.
Nios II Processor Reference Handbook
Preliminary



3–2 Chapter 3: Programming Model
Operating Modes
f High-level software development tools are not discussed here. Refer to the Nios II 
Software Developer’s Handbook for information about developing software.

Operating Modes
Operating modes control how the processor operates, manages system memory, and 
accesses peripherals. The Nios II architecture supports these operating modes: 

■ Supervisor mode

■ User mode

The following sections define the modes, their relationship to your system software 
and application code, and their relationship to the Nios II MMU and Nios II MPU. 
Refer to “Memory Management Unit” on page 3–3 for more information about the 
Nios II MMU. Refer to “Memory Protection Unit” on page 3–8 for more information 
about the Nios II MPU.

Supervisor Mode
Supervisor mode allows unrestricted operation of the processor. All code has access to 
all processor instructions and resources. The processor may perform any operation 
the Nios II architecture provides. Any instruction may be executed, any I/O operation 
may be initiated, and any area of memory may be accessed.

Operating systems and other system software run in supervisor mode. In systems 
with an MMU, application code runs in user mode, and the operating system, 
running in supervisor mode, controls the application’s access to memory and 
peripherals. In systems with an MPU, your system software controls the mode in 
which your application code runs. In Nios II systems without an MMU or MPU, all 
application and system code runs in supervisor mode. 

Code that needs direct access to and control of the processor runs in supervisor mode. 
For example, the processor enters supervisor mode whenever a processor exception 
(including processor reset or break) occurs. Software debugging tools also use 
supervisor mode to implement features such as breakpoints and watchpoints.

1 For systems without an MMU or MPU, all code runs in supervisor mode.

User Mode
User mode is available only when the Nios II processor in your hardware design 
includes an MMU or MPU. User mode exists solely to support operating systems. 
Operating systems (that make use of the processor’s user mode) run your application 
code in user mode. The user mode capabilities of the processor are a subset of the 
supervisor mode capabilities. Only a subset of the instruction set is available in user 
mode.

The operating system determines which memory addresses are accessible to user 
mode applications. Attempts by user mode applications to access memory locations 
without user access enabled are not permitted and cause an exception. Code running 
in user mode uses system calls to make requests to the operating system to perform 
I/O operations, manage memory, and access other system functionality in the 
supervisor memory.
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Memory Management Unit
The Nios II MMU statically divides the 32-bit virtual address space into user and 
supervisor partitions. Refer to “Address Space and Memory Partitions” on page 3–4 
for more information about the MMU memory partitions. The MMU provides 
operating systems access permissions on a per-page basis. Refer to “Virtual 
Addressing” on page 3–3 for more information about MMU pages.

The Nios II MPU supervisor and user memory divisions are determined by the 
operating system or runtime environment. The MPU provides user access 
permissions on a region basis. Refer to “Memory Regions” on page 3–8 for more 
information about MPU regions.

Memory Management Unit
The Nios II processor provides an MMU to support full-featured operating systems. 
Operating systems that require virtual memory rely on an MMU to manage the 
virtual memory. When present, the MMU manages memory accesses including 
translation of virtual addresses to physical addresses, memory protection, cache 
control, and software process memory allocation.

Recommended Usage
Including the Nios II MMU in your Nios II hardware system is optional. The MMU is 
only useful with an operating system that takes advantage of it.

Many Nios II systems have simpler requirements where minimal system software or a 
small-footprint operating system (such as Altera® HAL or a third party real-time 
operating system) is sufficient. Such software is unlikely to function correctly in a 
hardware system with an MMU-based Nios II processor. Do not include an MMU in 
your Nios II system unless your operating system requires it.

1 The Altera HAL and HAL-based real-time operating systems do not support the 
MMU.

If your system needs memory protection, but not virtual memory management, refer 
to “Memory Protection Unit” on page 3–8.

Memory Management
Memory management comprises two key functions:

■ Virtual addressing—Mapping a virtual memory space into a physical memory 
space

■ Memory protection—Allowing access only to certain memory under certain 
conditions

Virtual Addressing
A virtual address is the address that software uses. A physical address is the address 
which the hardware outputs on the address lines of the Avalon® bus. The Nios II 
MMU divides virtual memory into 4 KByte pages and physical memory into 4 KByte 
frames.
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Memory Management Unit
The MMU contains a hardware translation lookaside buffer (TLB). The operating 
system is responsible for creating and maintaining a page table (or equivalent data 
structures) in memory. The hardware TLB acts as a software managed cache for the 
page table. The MMU does not perform any operations on the page table, such as 
hardware table walks. Therefore the operating system is free to implement its page 
table in any appropriate manner. 

Table 3–1 shows how the Nios II MMU divides up the virtual address. There is a 20 bit 
virtual page number (VPN) and a 12 bit page offset.

As input, the TLB takes a VPN plus a process identifier (to guarantee uniqueness). As 
output, the TLB provides the corresponding physical frame number (PFN). 

Distinct processes can use the same virtual address space. The process identifier, 
concatenated with the virtual address, distinguishes identical virtual addresses in 
separate processes. To determine the physical address, the Nios II MMU translates a 
VPN to a PFN and then concatenates the PFN with the page offset. The bits in the 
page offset are not translated.

Memory Protection
The Nios II MMU maintains read, write, and execute permissions for each page. The 
TLB provides the permission information when translating a VPN. The operating 
system can control whether or not each process is allowed to read data from, write 
data to, or execute instructions on each particular page. The MMU also controls 
whether accesses to each data page are cacheable or uncacheable by default.

Whenever an instruction attempts to access a page that either has no TLB mapping, or 
lacks the appropriate permissions, the MMU generates a precise exception. Precise 
exceptions enable the system software to update the TLB, and then re-execute the 
instruction if desired.

Address Space and Memory Partitions
The MMU provides a 4 GByte virtual address space, and is capable of addressing up 
to 4 GBytes of physical memory.

1 The amount of actual physical memory, determined by the configuration of your 
hardware system, might be less than the available 4 GBytes of physical address space.

Virtual Memory Address Space
The 4 GByte virtual memory space is divided into partitions. The upper 2 GBytes of 
memory is reserved for the operating system and the lower 2 GBytes is reserved for 
user processes. Table 3–2 names and describes the partitions.

Table 3–1. MMU Virtual Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset
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Memory Management Unit
Each partition has a specific size, purpose, and relationship to the TLB:

■ The 512 MByte I/O partition provides access to peripherals. 

■ The 512 MByte kernel partition provides space for the operating system kernel.

■ The 1 GByte kernel MMU partition is used by the TLB miss handler and kernel 
processes.

■ The 2 GByte user partition is used by application processes.

I/O and kernel partitions bypass the TLB. The kernel MMU and user partitions use 
the TLB. If all software runs in the kernel partition, the MMU is effectively disabled.

Physical Memory Address Space
The 4 GByte physical memory is divided into low memory and high memory. The 
lowest 0.5 GBytes of physical address space is low memory. The upper 3.5 GBytes of 
physical address space is high memory. Figure 3–1 shows how physical memory is 
divided.

Table 3–2. Virtual Memory Partitions 

Partition Virtual Address Range Used By Memory Access
User Mode 

Access
Default Data 
Cacheability

I/O (1) 0xE0000000–0xFFFFFFFF Operating 
system

Bypasses TLB No Disabled

Kernel (1) 0xC0000000–0xDFFFFFFF Operating 
system

Bypasses TLB No Enabled

Kernel MMU (1) 0x80000000–0xBFFFFFFF Operating 
system

Uses TLB No Set by TLB

User 0x00000000–0x7FFFFFFF User 
processes

Uses TLB Set by TLB Set by TLB

Note to Table 3–2:

(1) Supervisor-only partition

Figure 3–1. Division of Physical Memory

0x1FFFFFFF

0x00000000
0.5 GByte Low Memory

3.5 GByte High Memory

0xFFFFFFFF

0x20000000

Accessed directly or via TLB

Accessed only via TLB
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Memory Management Unit
High physical memory can only be accessed through the TLB. Any physical address 
in low memory (29-bits or less) can be accessed through the TLB or by bypassing the 
TLB. When bypassing the TLB, a 29-bit physical address is computed by clearing the 
top three bits of the 32-bit virtual address.

1 To function correctly, the base physical address of all exception vectors (reset, general 
exception, break, and fast TLB miss) must point to low physical memory so that 
hardware can correctly map their virtual addresses into the kernel partition. This 
restriction is enforced by the Nios II Processor MegaWizard interface in SOPC Builder.

Data Cacheability
Each partition has a rule that determines the default data cacheability property of 
each memory access. When data cacheability is enabled on a partition of the address 
space, a data access to that partition can be cached, if a data cache is present in the 
system. When data cacheability is disabled, all access to that partition goes directly to 
the Avalon switch fabric. Bit 31 is not used to specify data cacheability, as it is in 
Nios II cores without MMUs. Virtual memory partitions that bypass the TLB have a 
default data cacheability property, as shown in Table 3–2. For partitions that are 
mapped through the TLB, data cacheability is controlled by the TLB on a per-page 
basis.

Non-I/O load and store instructions use the default data cacheability property. I/O 
load and store instructions are always non-cacheable, so they ignore the default data 
cacheability property.

TLB Organization
A TLB functions as a cache for the operating system’s page table. In Nios II processors 
with an MMU, one main TLB is shared by instruction and data accesses. The TLB is 
stored in on-chip RAM and handles translations for instruction fetches and 
instructions that perform data accesses.

The TLB is organized as an n-way set-associative cache. The software specifies the 
way (set) when loading a new entry.

1 You can configure the number of TLB entries and the number of ways (set 
associativity) of the TLB in SOPC Builder at system generation time. By default, the 
TLB is a 16-way cache. The default number of entries depends on the target device, as 
follows:

■ Cyclone®, Cyclone II, Stratix®, Stratix II, Stratix II GX—128 entries, requiring 
one M4K RAM

■ Cyclone III, Stratix III, Stratix IV—256 entries, requiring one M9K RAM

For further detail, refer to the Instantiating the Nios II Processor in SOPC Builder 
chapter of the Nios II Processor Reference Handbook.

The operating system software is responsible for guaranteeing that multiple TLB 
entries do not map the same virtual address. The hardware behavior is undefined 
when multiple entries map the same virtual address.

Each TLB entry consists of a tag and data portion. This is analogous to the tag and 
data portion of instruction and data caches.
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Memory Management Unit
f Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference 
Handbook for details on instruction and data caches.

The tag portion of a TLB entry contains information used when matching a virtual 
address to a TLB entry. Table 3–3 describes the tag portion of a TLB entry.

The TLB data portion determines how to translate a matching virtual address to a 
physical address. Table 3–4 describes the data portion of a TLB entry.

1 Because there is no “valid bit” in the TLB entry, the operating system software 
invalidates the TLB by writing unique VPN values from the I/O partition of virtual 
addresses into each TLB entry.

TLB Lookups
A TLB lookup attempts to convert a virtual address (VADDR) to a physical address 
(PADDR).

The TLB lookup algorithm for instruction fetches is as follows:

if (VPN match and (G = 1 or PID match)) 
if (X = 1) 

PADDR = concat(PFN, VADDR[11:0]) 
else 

take TLB permission violation exception 
else 

if (EH bit of status register = 1) 
take double TLB miss exception 

else 
take fast TLB miss exception

Refer to “Instruction-Related Exceptions” on page 3–30 for details on TLB exceptions.

Table 3–3. TLB Tag Portion Contents 

Field Name Description

VPN VPN is the virtual page number field. This field is compared with the top 20 bits of 
the virtual address.

PID PID is the process identifier field. This field is compared with the value of the 
current process identifier stored in the tlbmisc control register, effectively 
extending the virtual address. The field size is configurable at system generation 
time, and can be between 8 and 14 bits.

G G is the global flag. When G = 1, the PID is ignored in the TLB lookup.

Table 3–4. TLB Data Portion Contents 

Field Name Description

PFN PFN is the physical frame number field. This field specifies the upper bits of the 
physical address. The size of this field depends on the range of physical addresses 
present in the system. The maximum size is 20 bits.

C C is the cacheable flag. Determines the default data cacheability of a page. Can be 
overridden for data accesses using I/O load and store family of Nios II instructions.

R R is the readable flag. Allows load instructions to read a page.

W W is the writeable flag. Allows store instructions to write a page.

X X is the executable flag. Allows instruction fetches from a page.
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Memory Protection Unit
The TLB lookup algorithm for data accesses is as follows:

if (VPN match and (G = 1 or PID match)) 
if ((load and R = 1) or (store and W = 1) or flushda) 

PADDR = concatenate(PFN, VADDR[11:0]) 
else 

take TLB permission violation exception 
else 

if (EH bit of status register = 1) 
take double TLB miss exception 

else 
take fast TLB miss exception

Memory Protection Unit
The Nios II processor provides an MPU for operating systems and runtime 
environments that desire memory protection but do not require virtual memory 
management. For information about memory protection with virtual memory 
management, refer to “Memory Management Unit” on page 3–3.

When present and enabled, the MPU monitors all Nios II instruction fetches and data 
memory accesses to protect against errant software execution. The MPU is a hardware 
facility that system software uses to define memory regions and their associated 
access permissions. The MPU triggers a precise exception if software attempts to 
access a memory region in violation of its permissions, allowing you to intervene and 
handle the exception as appropriate. The precise exception effectively prevents the 
illegal access to memory.

The MPU extends the Nios II processor to support user mode and supervisor mode. 
Typically, system software runs in supervisor mode and end-user applications run in 
user mode, although all software can run in supervisor mode if desired. System 
software defines which MPU regions belong to supervisor mode and which belong to 
user mode.

Memory Regions
The MPU contains up to 32 instruction regions and 32 data regions. Each region is 
defined by the following attributes:

■ Base address

■ Region type

■ Region index

■ Region size or upper address limit

■ Access permissions

■ Default cacheability (data regions only)

Base Address
The base address specifies the lowest address of the region. The base address is 
aligned on a region-sized boundary. For example, a 4 Kbyte region must have a base 
address that is a multiple of 4 Kbytes. If the base address is not properly aligned, the 
behavior is undefined.
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Memory Protection Unit
Region Type
Each region is identified as either an instruction region or a data region. 

Region Index
Each region has an index ranging from zero to the number of regions of its region type 
minus one. Index zero has the highest priority. 

Region Size or Upper Address Limit
An SOPC Builder generation-time option controls whether the amount of memory in 
the region is defined by size or upper address limit. The size is an integer power of 
two bytes. The limit is the highest address of the region plus one. The minimum 
supported region size is 64 bytes but can be configured at system generation time for 
larger minimum sizes to save logic resources. The maximum supported region size 
equals the Nios II address space (a function of the address ranges of slaves connected 
to the Nios II masters). Any access outside of the Nios II address space is considered 
not to match any region and triggers an MPU region violation exception.

When regions are defined by size, the size is encoded as a binary mask to facilitate the 
following MPU region address range matching:

(address & region_mask) == region_base_address

When regions are defined by limit, the limit is encoded as an unsigned integer to 
facilitate the following MPU region address range matching:

(address >= region_base) && (address < region_limit)

The region limit uses a less-than instead of a less-than-or-equal-to comparison 
because less-than provides a more efficient implementation. The limit is one bit larger 
than the address so that full address range may be included in a range. Defining the 
region by limit results in slower and larger address range match logic than defining 
by size but allows finer granularity in region sizes.

Access Permissions
The access permissions consist of execute permissions for instruction regions and 
read/write permissions for data regions. Any instruction that performs a memory 
access that violates the access permissions triggers an exception. Additionally, any 
instruction that performs a memory access that does not match any region triggers an 
exception.

Default Cacheability
The default cacheability specifies whether normal load and store instructions access 
the data cache or bypass the data cache. The default cacheability is only present for 
data regions. You can override the default cacheability by using the ldio or stio 
instructions. The bit 31 cache bypass feature is available when the MPU is present. 
Refer to “Cache Memory” on page 3–38 for more information on cache bypass.
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Overlapping Regions
The memory addresses of regions can overlap. Overlapping regions have several uses 
including placing markers or small holes inside of a larger region. For example, the 
stack and heap may be located in the same region. To detect stack/heap overflows, 
you can define a small region between the stack and heap with no access permissions 
and assign it a higher priority than the larger region. Any access attempts to the hole 
region trigger an exception informing system software about the stack/heap 
overflow.

If regions overlap so that a particular access matches more than one region, the region 
with the highest priority (lowest index) determines the access permissions and default 
cacheability.

Enabling the MPU
The MPU is disabled on system reset. System software enables and disables the MPU 
by writing to a control register. Before enabling the MPU, you must create at least one 
instruction and one data region, otherwise unexpected results can occur. Refer to 
“Working with the MPU” on page 3–24 for more information.

General-Purpose Registers
The Nios II architecture provides thirty-two 32-bit general-purpose registers, r0 
through r31, as shown in Table 3–5. Some registers have names recognized by the 
assembler. For example, the zero register (r0) always returns the value zero, and 
writing to zero has no effect. The ra register (r31) holds the return address used by 
procedure calls and is implicitly accessed by call and ret instructions. C and C++ 
compilers use a common procedure-call convention, assigning specific meaning to 
registers r1 through r23 and r26 through r28.

Table 3–5. The Nios II General Purpose Registers  (Part 1 of 2)

Register Name Function Register Name Function

r0 zero 0x00000000 r16

r1 at Assembler temporary r17

r2 Return value r18

r3 Return value r19

r4 Register arguments r20

r5 Register arguments r21

r6 Register arguments r22

r7 Register arguments r23

r8 Caller-saved register r24 et Exception temporary 

r9 Caller-saved register r25 bt Breakpoint temporary (1)

r10 Caller-saved register r26 gp Global pointer

r11 Caller-saved register r27 sp Stack pointer

r12 Caller-saved register r28 fp Frame pointer

r13 Caller-saved register r29 ea Exception return address 

r14 Caller-saved register r30 ba Breakpoint return address (1)
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Control Registers
f For more information, refer to the Application Binary Interface chapter of the Nios II 
Processor Reference Handbook.

Control Registers
Control registers report the status and change the behavior of the processor. Control 
registers are accessed differently than the general-purpose registers. The special 
instructions rdctl and wrctl provide the only means to read and write to the 
control registers and are only available in supervisor mode.

1 When writing to control registers, all undefined bits must be written as zero.

The Nios II architecture supports up to 32 control registers. Table 3–6 shows details of 
the currently-defined control registers. All non-reserved control registers have names 
recognized by the assembler. 
 

r15 Caller-saved register r31 ra Return address

Notes to Table 3–5:

(1) This register is used exclusively by the JTAG debug module.

Table 3–5. The Nios II General Purpose Registers  (Part 2 of 2)

Register Name Function Register Name Function

Table 3–6. Control Register Names and Bits 

Register Name Register Contents

0 status Refer to Table 3–7 on page 3–12

1 estatus Refer to Table 3–9 on page 3–12

2 bstatus Refer to Table 3–10 on page 3–13

3 ienable Interrupt-enable bits

4 ipending Pending-interrupt bits

5 cpuid Unique processor identifier

6 Reserved Reserved

7 exception Refer to Table 3–11 on page 3–14

8 pteaddr (1) Refer to Table 3–13 on page 3–14

9 tlbacc (1) Refer to Table 3–15 on page 3–15

10 tlbmisc (1) Refer to Table 3–17 on page 3–16

11 Reserved Reserved

12 badaddr Refer to Table 3–19 on page 3–19

13 config (2) Refer to Table 3–21 on page 3–19

14 mpubase (2) Refer to Table 3–23 on page 3–20

15 mpuacc (2) Refer to Table 3–25 on page 3–21

16-31 Reserved Reserved

Notes to Table 3–6:

(1) Available only when the MMU is present. Otherwise reserved.
(2) Available only when the MPU is present. Otherwise reserved.
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Control Registers
The following sections describe the non-reserved control registers.

The status Register
The value in the status register controls the state of the Nios II processor. All status 
bits are cleared at processor reset. Some bits are exclusively used by and available 
only to certain features of the processor. Table 3–7 shows the layout of the status 
register.

Table 3–8 gives details of the fields defined in the status register.

The estatus Register
The estatus register holds a saved copy of the status register during non-break 
exception processing. Table 3–9 shows the layout of the status register.

The names of the defined bits are the same as the status register bits prepended with 
the letter E. Table 3–8 also describes the details of the fields defined in the estatus 
register.

The exception handler can examine estatus to determine the pre-exception status of 
the processor. When returning from an exception, the eret instruction causes the 
processor to copy estatus back to status, restoring the pre-exception value of status. 
Refer to “Exception Processing” on page 3–25 for more information. 

Table 3–7. status Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

E
H U

P
I
E

Table 3–8. status Control Register Field Descriptions 

Bit Description Access Reset Available

EH (1) EH is the exception handler bit. The processor sets EH to one when an 
exception occurs (including breaks). Software clears EH to zero when ready 
to handle exceptions again. EH is used by the MMU to determine whether a 
TLB miss exception is a fast TLB miss or a double TLB miss. In systems 
without an MMU, EH is always zero.

Read/Write 0 MMU only

U (1) U is the user mode bit. When U = 1, the processor operates in user mode. 
When U = 0, the processor operates in supervisor mode. In systems 
without an MMU, U is always zero.

Read/Write 0 MMU or 
MPU only

PIE PIE is the processor interrupt-enable bit. When PIE = 0, interrupts are 
ignored. When PIE = 1, interrupts can be taken, depending on the value of 
the ienable register.

Read/Write 0 Always

Notes to Table 3–8:

(1) The state where both EH and U are one is illegal and causes undefined results.

Table 3–9. estatus Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

E
E
H

E
U

E
P
I
E
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The bstatus Register
The bstatus register holds a saved copy of the status register during break 
exception processing. Table 3–10 shows the layout of the status register.

The names of the defined bits are the same as the status register bits prepended with 
the letter B. Table 3–8 also describes the details of the fields defined in the estatus 
register.

When a break occurs, the value of the status register is copied into bstatus. Using 
bstatus, the debugger can restore the status register to the value prior to the 
break. The bret instruction causes the processor to copy bstatus back to status. Refer 
to “Processing a Break” on page 3–28 for more information.

The ienable Register
The ienable register controls the handling of external hardware interrupts. Each bit 
of the ienable register corresponds to one of the interrupt inputs, irq0 through 
irq31. A value of one in bit n means that the corresponding irqn interrupt is 
enabled; a bit value of zero means that the corresponding interrupt is disabled. Refer 
to “Exception Processing” on page 3–25 for more information.

The ipending Register
The value of the ipending register indicates the value of the interrupt signals driven 
into the processor. A value of one in bit n means that the corresponding irqn input is 
asserted. Writing a value to the ipending register has no effect. 

The cpuid Register
The cpuid register holds a constant value that uniquely identifies each processor in a 
multi-processor system. The cpuid value is determined at system generation time 
and is guaranteed to be unique for each processor in the system. Writing to the cpuid 
register has no effect.

The exception Register
When the extra exception information option is enabled, the Nios II processor 
provides information useful to system software for exception processing in the 
exception and badaddr registers when an exception occurs. When your system 
contains an MMU or MPU, the extra exception information is always enabled. When 
no MMU or MPU is present, the Nios II Megawizard interface gives you the option to 
have the processor provide the extra exception information.

To see how to control the extra exception information option, refer to the Instantiating 
the Nios II Processor in SOPC Builder chapter of the Nios II Processor Reference Handbook.

Table 3–11 shows the layout of the exception register.

Table 3–10. bstatus Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

B
E
H

B
U

B
P
I
E
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Table 3–12 gives details of the fields defined in the exception register.

The pteaddr Register
The pteaddr register contains the virtual address of the operating system’s page 
table and is only available in systems with an MMU. The pteaddr register layout 
accelerates fast TLB miss exception handling. Table 3–13 shows the layout of the 
pteaddr register.

Table 3–14 gives details of the fields defined in the pteaddr register.

Software writes to the PTBASE field when switching processes. Hardware never 
writes to the PTBASE field.

Software writes to the VPN field when writing a TLB entry. Hardware writes to the 
VPN field on a fast TLB miss exception, a TLB permission violation exception, or on a 
TLB read operation. The VPN field is not written on any exceptions taken when an 
exception is already active, that is, when status.EH is already one.

The tlbacc Register
The tlbacc register is used to access TLB entries and is only available in systems 
with an MMU. The tlbacc register holds values that software will write into a TLB 
entry or has previously read from a TLB entry. The tlbacc register provides access to 
only a portion of a complete TLB entry. pteaddr.VPN and tlbmisc.PID hold the 
remaining TLB entry fields.

Table 3–15 shows the layout of the tlbacc register.

Table 3–11. exception Control Register Field Descriptions 

Field Description Access Reset Available

CAUSE CAUSE is written by the Nios II processor when any non-break 
exception occurs. CAUSE contains a code for the highest-priority 
exception occurring at the time. The Cause column in Table 3–31 on 
page 3–26 shows the CAUSE field value for each exception.

Read 0 Only with 
extra 

exception 
information 

Table 3–12. exception Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CAUSE Rsvd

Table 3–13. pteaddr Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PTBASE VPN Rsvd

Table 3–14. pteaddr Control Register Field Descriptions 

Field Description Access Reset Available

PTBASE PTBASE is the base virtual address of the page table. Read/Write 0 Only with 
MMU 

VPN VPN is the virtual page number. VPN can be set by both hardware 
and software.

Read/Write 0 Only with 
MMU
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Table 3–16 gives details of the fields defined in the tlbacc register.

Issuing a wrctl instruction to the tlbacc register writes the tlbacc register with 
the specified value. If tlbmisc.WE = 1, the wrctl instruction also initiates a TLB 
write operation, which writes a TLB entry. The TLB entry written is specified by the 
line portion of pteaddr.VPN and the tlbmisc.WAY field. The value written is 
specified by the value written into tlbacc along with the values of pteaddr.VPN 
and tlbmisc.PID. A TLB write operation also increments tlbmisc.WAY, allowing 
software to quickly modify TLB entries.

Issuing a rdctl instruction to the tlbacc register returns the value of the tlbacc 
register. The tlbacc register is written by hardware when software triggers a TLB 
read operation (that is, when wrctl sets tlbmisc.RD to one). 

The tlbacc register format is the recommended format for entries in the operating 
system page table. The IG bits are ignored by the hardware on wrctl to tlbacc and 
read back as zero on rdctl from tlbacc. The operating system can use the IG bits to 
hold operating system specific information without having to clear these bits to zero 
on a TLB write operation.

The tlbmisc Register
The tlbmisc register contains the remaining TLB-related fields and is only available 
in systems with an MMU. Table 3–17 shows the layout of the tlbmisc register.

Table 3–15. tlbacc Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IG C R W X G PFN

Table 3–16. tlbacc Control Register Field Descriptions 

Field Description Access Reset Available

IG IG is ignored by hardware and available to hold operating system 
specific information. Read as zero but can be written as non-zero.

Read/Write 0 Only with 
MMU 

C C is the data cacheable flag. When C = 0, data accesses are 
uncacheable. When C = 1, data accesses are cacheable.

Read/Write 0 Only with 
MMU 

R R is the readable flag. When R = 0, load instructions are not allowed 
to access memory. When R = 1, load instructions are allowed to 
access memory.

Read/Write 0 Only with 
MMU 

W W is the writable flag. When W = 0, store instructions are not allowed 
to access memory. When W = 1, store instructions are allowed to 
access memory.

Read/Write 0 Only with 
MMU 

X X is the executable flag. When X = 0, instructions are not allowed to 
execute. When X = 1, instructions are allowed to execute.

Read/Write 0 Only with 
MMU 

G G is the global flag. When G = 0, tlbmisc.PID is included in the 
TLB lookup. When G = 1, tlbmisc.PID is ignored and only the 
virtual page number is used in the TLB lookup. 

Read/Write 0 Only with 
MMU 

PFN PFN is the physical frame number field. All unused upper bits must 
be zero.

Read/Write 0 Only with 
MMU 
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Table 3–18 gives details of the fields defined in the tlbmisc register.

The sections below provide further details of the tlbmisc fields.

The RD Flag
System software triggers a TLB read operation by setting tlbmisc.RD (with a wrctl 
instruction). A TLB read operation loads the following register fields with the 
contents of a TLB entry:

■ The tag portion of pteaddr.VPN

■ tlbmisc.PID

■ The tlbacc register

The TLB entry to be read is specified by the following values:

■ the line portion of pteaddr.VPN

■ tlbmisc.WAY

Table 3–17. tlbmisc Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved WAY (1)

R
D

W
E

PID (1)

D
B
L

B
A
D

P
E
R
M D

Notes to Table 3–17:

(1) This field size is variable. Unused upper bits must written as zero.

Table 3–18. tlbmisc Control Register Field Descriptions 

Field Description Access Reset Available

WAY The WAY field controls the mapping from the VPN to a particular 
TLB entry. 

Read/Write 0 Only with 
MMU 

RD RD is the read flag. Setting RD to one triggers a TLB read operation. Write 0 Only with 
MMU 

WE WE is the TLB write enable flag. When WE = 1, a write to tlbacc 
writes through to a TLB entry.

Read/Write 0 Only with 
MMU 

PID PID is the process identifier field. Read/Write 0 Only with 
MMU 

DBL (1) DBL is the double TLB miss exception flag. Read 0 Only with 
MMU 

BAD (1) BAD is the bad virtual address exception flag. Read 0 Only with 
MMU 

PERM (1) PERM is the TLB permission violation exception flag. Read 0 Only with 
MMU 

D D is the data access exception flag. When D = 1, the exception is a 
data access exception. When D = 0, the exception is an instruction 
access exception.

Read 0 Only with 
MMU 

Notes to Table 3–18:

(1) You can also use exception.CAUSE to determine these exceptions.
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When system software changes the fields that specify the TLB entry, there is no 
immediate effect on pteaddr.VPN, tlbmisc.PID, or the tlbacc register. The 
registers retain their previous values until the next TLB read operation is initiated. For 
example, when the operating system sets pteaddr.VPN to a new value, the contents 
of tlbacc continues to reflect the previous TLB entry. tlbacc does not contain the 
new TLB entry until after an explicit TLB read.

The WE Flag
When WE = 1, a write to tlbacc writes the tlbacc register and a TLB entry. When WE 
= 0, a write to tlbacc only writes the tlbacc register.

Hardware sets the WE flag to one on a TLB permission violation exception, and on a 
TLB miss exception when status.EH = 0. When a TLB write operation writes the 
tlbacc register, the write operation also writes to a TLB entry when WE = 1. 

The WAY Field
The WAY field controls the mapping from the VPN to a particular TLB entry. WAY 
specifies the set to be written to in the TLB. The MMU increments WAY when system 
software performs a TLB write operation. Unused upper bits in WAY must be written 
as zero.

1 The number of ways (sets) is configurable in SOPC Builder at generation time, up to a 
maximum of 16. 

The PID Field
PID is a unique identifier for the current process that effectively extends the virtual 
address. The process identifier can be less than 14 bits. Any unused upper bits must 
be zero.

tlbmisc.PID contains the PID field from a TLB tag. The operating system must set 
the PID field when switching processes, and before each TLB write operation.

1 Use of the process identifier is optional. To implement memory management without 
process identifiers, clear tlbmisc.PID to zero. Without a process identifier, all 
processes share the same virtual address space.

The MMU sets tlbmisc.PID on a TLB read operation. When the software triggers a 
TLB read, by setting tlbmisc.RD to one with the wrctl instruction, the PID value 
read from the TLB has priority over the value written by the wrctl instruction.

The size of the PID field is configured in SOPC Builder at system generation, and can 
be from 8 to 14 bits. If system software defines a process identifier smaller than the 
PID field, unused upper bits must be written as zero.

The DBL Flag
During a general exception, the processor sets DBL to one when a double TLB miss 
condition exists. Otherwise, the processor clears DBL to zero.

The DBL flag indicates whether the most recent exception is a double TLB miss 
condition. When a general exception occurs, the MMU sets DBL to one if a double TLB 
miss is detected, and clears DBL to zero otherwise.
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The BAD Flag
During a general exception, the processor sets BAD to one when a bad virtual address 
condition exists, and clears BAD to zero otherwise. The following exceptions set the 
BAD flag to one:

■ Supervisor-only instruction address

■ Supervisor-only data address

■ Misaligned data address

■ Misaligned destination address

Refer to Table 3–31 on page 3–26 for more information on these exceptions.

The PERM Flag
During a general exception, the processor sets PERM to one for a TLB permission 
violation exception, and clears PERM to zero otherwise.

The D Flag
The D flag indicates whether the exception is an instruction access exception or a data 
access exception. During a general exception, the processor sets D to one when the 
exception is related to a data access, and clears D to zero for all other non-break 
exceptions.

The following exceptions set the D flag to one:

■ Fast TLB miss (data)

■ Double TLB miss (data)

■ TLB permission violation (read or write)

■ Misaligned data address

■ Supervisor-only data address

The badaddr Register
When the extra exception information option is enabled, the Nios II processor 
provides information useful to system software for exception processing in the 
exception and badaddr registers when an exception occurs. When your system 
contains an MMU or MPU, the extra exception information is always enabled. When 
no MMU or MPU is present, the Nios II Megawizard interface gives you the option to 
have the processor provide the extra exception information.

To see how to control the extra exception information option, refer to the Instantiating 
the Nios II Processor in SOPC Builder chapter of the Nios II Processor Reference Handbook.

When the option for extra exception information is enabled and a processor exception 
occurs, the badaddr register contains the byte instruction or data address associated 
with certain exceptions at the time the exception occurred. Table 3–31 on page 3–26 
shows which exceptions write the badaddr register along with the value written. 
Table 3–19 shows the layout of the badaddr register.
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Table 3–20 gives details of the fields defined in the badaddr register.

The BADDR field allows up to a 32-bit instruction address or data address. If an MMU 
or MPU is present, the BADDR field is 32 bits because MMU and MPU instruction and 
data addresses are always full 32-bit values. When an MMU is present, the BADDR 
field contains the virtual address.

If there is no MMU or MPU and the Nios II address space is less than 32 bits, unused 
high-order bits are written and read as zero. If there is no MMU, bit 31 of a data 
address (used to bypass the data cache) is always zero in the BADDR field.

The config Register
The config register configures Nios II runtime behaviors that do not need to be 
preserved during exception processing (in contrast to the information in the status 
register). Table 3–21 shows the layout of the config register.

Table 3–22 gives details of the fields defined in the config register

The mpubase Register
The mpubase register works in conjunction with the mpuacc register to set and 
retrieve MPU region information and is only available in systems with an MPU. 
Table 3–23 shows the layout of the mpubase register.

Table 3–19. badaddr Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BADDR

Table 3–20. badaddr Control Register Field Descriptions 

Field Description Access Reset Available

BADDR BADDR contains the byte instruction address or data address 
associated with an exception when certain exceptions occur. The 
Address column of Table 3–31 on page 3–26 shows which 
exceptions write the BADDR field. 

Read 0 Only with 
extra 

exception 
information

Table 3–21. config Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

P
E

Table 3–22. config Control Register Field Descriptions 

Field Description Access Reset Available

PE PE is the memory protection enable bit. When PE =1, the MPU is 
enabled. When PE = 0, the MPU is disabled. In systems without an 
MPU, PE is always zero.

Read/Write 0 Only with 
MPU
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Table 3–24 gives details of the fields defined in the mpubase register
.

The BASE field specifies the base address of an MPU region. The 25-bit BASE field 
corresponds to bits 6 through 30 of the base address, making the base address always 
a multiple of 64 bytes. If the minimum region size set in SOPC Builder at generation 
time is larger than 64 bytes, unused low-order bits of the BASE field must be written 
as zero and are read as zero. For example, if the minimum region size is 1024 bytes, 
the four least-significant bits of the BASE field (bits 6 though 9 of the mpubase 
register) must be zero. Similarly, if the Nios II address space is less than 31 bits, 
unused high-order bits must also be written as zero and are read as zero.

The INDEX and D fields specify the region information to access when an MPU region 
read or write operation is performed. The D field specifies whether the region is a data 
region or an instruction region. The INDEX field specifies which of the 32 data or 
instruction regions to access. If there are fewer than 32 instruction or 32 data regions, 
unused high-order bits must be written as zero and are read as zero.

Refer to “MPU Region Read and Write Operations” on page 3–24 for more 
information on MPU region read and write operations.

The mpuacc Register
The mpuacc register works in conjunction with the mpubase register to set and 
retrieve MPU region information and is only available in systems with an MPU. The 
mpuacc register consists of attributes that will be set or have been retrieved which 
define the MPU region. The mpuacc register only holds a portion of the attributes that 
define an MPU region. The remaining portion of the MPU region definition is held by 
the BASE field of the mpubase register.

An SOPC Builder generation-time option controls whether the mpuacc register 
contains a MASK or LIMIT field. Table 3–25 shows the layout of the mpuacc register 
with the MASK field. Table 3–26 shows the layout of the mpuacc register with the 
LIMIT field.

Table 3–23. mpubase Control Register Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BASE (2) INDEX (1) D

Notes to Table 3–23:

(1) This field size is variable. Unused upper bits must written as zero.
(2) This field size is variable. Unused upper bits and unused lower bits must written as zero.

Table 3–24. mpubase Control Register Field Descriptions 

Field Description Access Reset Available

BASE BASE is the base memory address of the region identified by the 
INDEX and D fields.

Read/Write 0 Only with 
MPU

INDEX INDEX is the region index number. Read/Write 0 Only with 
MPU

D D is the region access bit. When D =1, INDEX refers to a data 
region. When D = 0, INDEX refers to an instruction region.

Read/Write 0 Only with 
MPU
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Table 3–27 gives details of the fields defined in the mpuacc register.

The sections below provide further details of the mpuacc fields.

The MASK Field
When the amount of memory reserved for a region is defined by size, the MASK field 
specifies the size of the memory region. The MASK field is the same number of bits as 
the BASE field of the mpubase register.

1 Unused high-order or low-order bits must be written as zero and are read as zero.

Table 3–28 shows the MASK field encodings for all possible region sizes in a full 31-bit 
byte address space.

Table 3–25. mpuacc Control Register Fields for MASK Variation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MASK (1) C PERM

R
D

W
R

Note to Table 3–25:

(1) This field size is variable. Unused upper bits and unused lower bits must written as zero.

Table 3–26. mpuacc Control Register Fields for LIMIT Variation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LIMIT (1) C PERM

R
D

W
R

Note to Table 3–26:

(1) This field size is variable. Unused upper bits and unused lower bits must written as zero.

Table 3–27. mpuacc Control Register Field Descriptions 

Field Description Access Reset Available

MASK (1) MASK specifies the size of the region. Read/Write 0 Only with 
MPU

LIMIT (1) LIMIT specifies the upper address limit of the region. Read/Write 0 Only with 
MPU

C C is the data cacheable flag. C only applies to MPU data regions and 
determines the default cacheability of a data region. When C = 0, the 
data region is uncacheable. When C = 1, the data region is 
cacheable.

Read/Write 0 Only with 
MPU

PERM PERM specifies the access permissions for the region. Read/Write 0 Only with 
MPU

RD RD is the read region flag. When RD = 1, wrctl instructions to the 
mpuacc register perform a read operation.

Write 0 Only with 
MPU

WE WR is the write region flag. When WR = 1, wrctl instructions to the 
mpuacc register perform a write operation.

Write 0 Only with 
MPU

Note to Table 3–27:

(1) The MASK and LIMIT fields are mutually exclusive. Refer to Table 3–25 and Table 3–26.
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Bit 31 of the mpuacc register is not used by the MASK field. Because memory region 
size is already a power of two, one less bit is needed. The MASK field contains the 
following value, where region_size is in bytes:

MASK = 0x1FFFFFF << log2(region_size >> 6)

The LIMIT Field
When the amount of memory reserved for a region is defined by an upper address 
limit, the LIMIT field specifies the upper address of the memory region plus one. For 
example, to achieve a memory range for byte addresses 0x4000 to 0x4fff with a 256 
byte minimum region size, the BASE field of the mpubase register is set to 0x40 
(0x4000 >> 8) and the LIMIT field is set to 0x50 (0x5000 >> 8). Because the 
LIMIT field is one more bit than the number of bits of the BASE field of the mpubase 
register, bit 31 of the mpuacc register is available to the LIMIT field.

Table 3–28. MASK Region Size Encodings 

MASK Encoding Region Size

0x1FFFFFF 64 bytes

0x1FFFFFE 128 bytes

0x1FFFFFC 256 bytes

0x1FFFFF8 512 bytes

0x1FFFFF0 1 Kbyte

0x1FFFFE0 2 Kbytes

0x1FFFFC0 4 Kbytes

0x1FFFF80 8 Kbytes

0x1FFFF00 16 Kbytes

0x1FFFE00 32 Kbytes

0x1FFFC00 64 Kbytes

0x1FFF800 128 Kbytes

0x1FFF000 256 Kbytes

0x1FFE000 512 Kbytes

0x1FFC000 1 Mbyte

0x1FF8000 2 Mbytes

0x1FF0000 4 Mbytes

0x1FE0000 8 Mbytes

0x1FC0000 16 Mbytes

0x1F80000 32 Mbytes

0x1F00000 64 Mbytes

0x1E00000 128 Mbytes

0x1C00000 256 Mbytes

0x1800000 512 Mbytes

0x1000000 1 Gbyte

0x0000000 2 Gbytes
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The C Flag
The C flag determines the default data cacheability of an MPU region. The C flag only 
applies to data regions. For instruction regions, the C bit must be written with 0 and is 
always read as 0.

When data cacheability is enabled on a data region, a data access to that region can be 
cached, if a data cache is present in the system. You can override the default 
cacheability and force an address to non-cacheable with an ldio or stio instruction.

1 The bit 31 cache bypass feature is supported when the MPU is present. Refer to 
“Cache Memory” on page 3–38 for more information on cache bypass.

The PERM Field
The PERM field specifies the allowed access permissions. Table 3–29 shows possible 
values of the PERM field for instruction regions and Table 3–30 shows possible values 
of the PERM field for data regions.

1 Unlisted table values are reserved and must not be used. If you use reserved values, 
the resulting behavior is undefined.

The RD Flag
Setting the RD flag signifies that an MPU region read operation should be performed 
when a wrctl instruction is issued to the mpuacc register. Refer to “MPU Region 
Read and Write Operations” on page 3–24 for more information. The RD flag always 
returns 0 when read by a rdctl instruction.

The WR Flag
Setting the WR flag signifies that an MPU region write operation should be performed 
when a wrctl instruction is issued to the mpuacc register. Refer to “MPU Region 
Read and Write Operations” on page 3–24 for more information. The WR flag always 
returns 0 when read by a rdctl instruction.

Table 3–29. Instruction Region Permission Values 

Value Supervisor Permissions User Permissions

0 None None

1 Execute None

2 Execute Execute

Table 3–30. Data Region Permission Values 

Value Supervisor Permissions User Permissions

0 None None

1 Read None

2 Read Read

4 Read/Write None

5 Read/Write Read

6 Read/Write Read/Write
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1 Setting both the RD and WR flags to one results in undefined behavior.

Working with the MPU
This section provides a basic overview of MPU initialization and the MPU region read 
and write operations.

MPU Region Read and Write Operations
MPU region read and write operations are operations that access MPU region 
attributes through the mpubase and mpuacc control registers. The mpubase.BASE, 
mpuacc.MASK, mpuacc.LIMIT, mpuacc.C, and mpuacc.PERM fields comprise the 
MPU region attributes.

MPU region read operations retrieve the current values for the attributes of a region. 
Each MPU region read operation consists of the following actions:

■ Execute a wrctl instruction to the mpubase register with the mpubase.INDEX 
and mpubase.D fields set to identify the MPU region.

■ Execute a wrctl instruction to the mpuacc register with the mpuacc.RD field set 
to one and the mpuacc.WR field cleared to zero. This action loads the mpubase 
and mpuacc register values.

■ Execute a rdctl instruction to the mpubase register to read the loaded the 
mpubase register value.

■ Execute a rdctl instruction to the mpuacc register to read the loaded the mpuacc 
register value.

The MPU region read operation retrieves mpubase.BASE, mpuacc.MASK or 
mpuacc.LIMIT, mpuacc.C, and mpuacc.PERM values for the MPU region.

1 Values for the mpubase register are not actually retrieved until the wrctl instruction 
to the mpuacc register is performed.

MPU region write operations set new values for the attributes of a region. Each MPU 
region write operation consists of the following actions:

■ Execute a wrctl instruction to the mpubase register with the mpubase.INDEX 
and mpubase.D fields set to identify the MPU region.

■ Execute a wrctl instruction to the mpuacc register with the mpuacc.WR field set 
to one and the mpuacc.RD field cleared to zero.

The MPU region write operation sets the values for mpubase.BASE, mpuacc.MASK 
or mpuacc.LIMIT, mpuacc.C, and mpuacc.PERM as the new attributes for the MPU 
region.
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Normally, a wrctl instruction flushes the pipeline to guarantee that any side effects 
of writing control registers take effect immediately after the wrctl instruction 
completes execution. However, wrctl instructions to the mpubase and mpuacc 
control registers do not automatically flush the pipeline. Instead, system software is 
responsible for flushing the pipeline as needed (either by using a flushp instruction 
or a wrctl instruction to a register that does flush the pipeline). Because a context 
switch typically requires reprogramming the MPU regions for the new thread, 
flushing the pipeline on each wrctl instruction would create unnecessary overhead.

MPU Initialization
Your system software must provide a data structure that contains the region 
information described in “Memory Regions” on page 3–8 for each active thread. The 
data structure ideally contains two 32-bit values that correspond to the mpubase and 
mpuacc register formats.

The MPU is disabled on system reset. Before enabling the MPU, Altera recommends 
initializing all MPU regions. Enable desired instruction and data regions by writing 
each region’s attributes to the mpubase and mpuacc registers as described in “MPU 
Region Read and Write Operations” on page 3–24. You must also disable unused 
regions. When using region size, clear mpuacc.MASK to zero. When using limit, set 
the mpubase.BASE to a non-zero value and clear mpuacc.LIMIT to zero.

1 You must enable at least one instruction and one data region, otherwise unpredictable 
behavior might occur.

To perform a context switch, use a wrctl to write a zero to the PE field of the config 
register to disable the MPU, define all MPU regions from the new thread’s data 
structure, and then use another wrctl to write a one to config.PE to enable the 
MPU.

Define each region using the pair of wrctl instructions described in “MPU Region 
Read and Write Operations” on page 3–24. Repeat this dual wrctl instruction 
sequence until all desired regions are defined.

Debugger Access
The debugger can access all MPU-related control registers using the normal wrctl 
and rdctl instructions. During debugging, the Nios II ignores the MPU, effectively 
temporarily disabling it.

Exception Processing
An exception is a transfer of control away from a program’s normal flow of execution, 
caused by an event, either internal or external to the processor, which requires 
immediate attention. Exception processing is the act of responding to an exception, 
and then returning to the pre-exception execution state.

Each of the Nios II exceptions falls into one of the following categories: 

■ Reset exceptions

■ Break exceptions
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■ Interrupt exceptions

■ Instruction-related exceptions

Table 3–31 shows all possible Nios II exceptions in order of highest to lowest priority. 
The following table columns specify information for the exceptions:

■ Exception—Gives the name of the exception.

■ Type—Specifies the exception type. 

■ Available—Specifies when support for that exception is present. 

■ Cause—Specifies the value of the CAUSE field of the exception register, for 
exceptions that write the exception.CAUSE field. 

■ Address—Specifies the instruction or data address associated with the exception.

■ Vector—Specifies which exception vector address the processor passes control to 
when the exception occurs.

Table 3–31. Nios II Exceptions (In Decreasing Priority Order)  (Part 1 of 2)

Exception  Type Available Cause Address  Vector

Reset Reset Always 0 Reset

Hardware Break Break Always — Break

Processor-only Reset 
Request

Reset Always 1 Reset

Interrupt Interrupt Always 2 ea-4 (2) General exception

Supervisor-only Instruction 
Address (1) 

Instruction-related MMU 9 ea-4 (2) General exception

Fast TLB Miss 
(instruction) (1)

Instruction-related MMU 12 pteaddr.VPN, 
ea-4 (2)

Fast TLB Miss 
exception

Double TLB Miss 
(instruction) (1)

Instruction-related MMU 12 pteaddr.VPN, 
ea-4 (2)

General exception

TLB Permission Violation 
(execute) (1)

Instruction-related MMU 13 pteaddr.VPN, 
ea-4 (2)

General exception

MPU Region Violation 
(instruction) (1) 

Instruction-related MPU 16 ea-4 (2) General exception

Supervisor-only Instruction Instruction-related MMU or MPU 10 ea-4 (2) General exception

Trap Instruction Instruction-related Always 3 ea-4 (2) General exception

Illegal Instruction Instruction-related Illegal 
instruction 
detection on, 
MMU, or MPU

5 ea-4 (2) General exception

Unimplemented Instruction Instruction-related Always 4 ea-4 (2) General exception

Break Instruction Instruction-related Always — ba-4 (2) Break

Supervisor-only Data 
Address

Instruction-related MMU 11 badaddr (data 
address)

General exception

Misaligned Data Address Instruction-related Illegal memory 
access 
detection on, 
MMU, or MPU

6 badaddr (data 
address)

General exception
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The following sections describe each exception type in detail.

Reset Exceptions
When a processor reset signal is asserted, the Nios II processor performs the following 
steps:

1. Clears the status register to 0x0.

2. Invalidates the instruction-cache line associated with the reset vector.

3. Begins executing the reset handler, located at the reset vector.

Clearing the status register disables hardware interrupts. If the MMU or MPU is 
present, clearing the status register forces the processor into supervisor mode.

Invalidating the reset cache line guarantees that instruction fetches for reset code 
comes from uncached memory.

Aside from the instruction-cache line associated with the reset vector, the contents of 
the cache memories are indeterminate after reset. To ensure cache coherency after 
reset, the reset handler located at the reset vector must immediately initialize the 
instruction cache. Next, either the reset handler or a subsequent routine should 
proceed to initialize the data cache.

The reset state is undefined for all other system components, including but not 
limited to:

■ General-purpose registers, except for zero (r0) which is permanently zero.

Misaligned Destination 
Address

Instruction-related Illegal memory 
access 
detection on, 
MMU, or MPU

7 badaddr 
(destination 
address)

General exception

Division Error Instruction-related Division error 
detection on

8 ea-4 (2) General exception

Fast TLB Miss (data) Instruction-related MMU 12 pteaddr.VPN, 
badaddr (data 
address)

Fast TLB Miss 
exception

Double TLB Miss (data) Instruction-related MMU 12 pteaddr.VPN, 
badaddr (data 
address)

General exception

TLB Permission Violation 
(read)

Instruction-related MMU 14 pteaddr.VPN, 
badaddr (data 
address)

General exception

TLB Permission Violation 
(write)

Instruction-related MMU 15 pteaddr.VPN, 
badaddr (data 
address)

General exception

MPU Region Violation 
(data)

Instruction-related MPU 17 badaddr (data 
address)

General exception

Notes to Table 3–31:

(1) It is possible for any instruction fetch to cause this exception.
(2) Refer to Table 3–6 on page 3–11 for descriptions of the ea and ba registers.

Table 3–31. Nios II Exceptions (In Decreasing Priority Order)  (Part 2 of 2)

Exception  Type Available Cause Address  Vector
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■ Control registers, except for status which is reset to 0x0.

■ Instruction and data memory.

■ Cache memory, except for the instruction-cache line associated with the reset 
vector.

■ Peripherals. Refer to the appropriate peripheral data sheet or specification for reset 
conditions.

■ Custom instruction logic. Refer to the Nios II Custom Instruction User Guide for reset 
conditions.

■ Nios II C-to-hardware (C2H) acceleration compiler logic.

Break Exceptions
A break is a transfer of control away from a program’s normal flow of execution for 
the purpose of debugging. Software debugging tools can take control of the Nios II 
processor via the JTAG debug module.

Break processing is the means by which software debugging tools implement debug 
and diagnostic features, such as breakpoints and watchpoints. Break processing is a 
type of exception processing, but the break mechanism is independent from general 
exception processing. A break can occur during exception processing, enabling debug 
tools to debug exception handlers.

The processor enters the break processing state under either of the following 
conditions:

■ The processor executes the break instruction. This is often referred to as a 
software break.

■ The JTAG debug module asserts a hardware break.

Processing a Break
A break causes the processor to take the following steps:

1. Stores the contents of the status register to bstatus.

2. Clears status.PIE to zero, disabling external processor interrupts.

3. Writes the address of the instruction following the break to the ba register (r30).

4. Clears status.U to zero, forcing the processor into supervisor mode, when the 
system contains an MMU or MPU.

5. Sets status.EH to one, indicating the processor is handling an exception, when 
the system contains an MMU.

6. Transfers execution to the break handler, stored at the break vector specified at 
system generation time.

Register Usage
The bstatus control register and general-purpose registers bt (r25) and ba (r30) 
are reserved for debugging. Code is not prevented from writing to these registers, but 
debug code might overwrite the values. The break handler can use bt (r25) to help 
save additional registers.
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Returning From a Break
After processing a break, the break handler releases control of the processor by 
executing a bret instruction. The bret instruction restores status by copying the 
contents of bstatus and returns program execution to the address in the ba register 
(r30). Aside from bt, all registers are guaranteed to be returned to their pre-break 
state after returning from the break handler. 

Interrupt Exceptions
An external source such as a peripheral device can request a hardware interrupt by 
asserting one of the processor’s 32 interrupt-request inputs, irq0 through irq31. A 
hardware interrupt is generated if and only if all three of these conditions are true: 

■ The PIE bit of the status control register is one.

■ An interrupt-request input, irqn, is asserted.

■ The corresponding bit n of the ienable control register is one.

Upon hardware interrupt, the processor clears the PIE bit to zero, disabling further 
interrupts, and performs the other steps outlined in “Processing Interrupt and 
Instruction-Related Exceptions” on page 3–35.

The value of the ipending control register shows which interrupt requests (IRQ) are 
pending. By peripheral design, an IRQ bit is guaranteed to remain asserted until the 
processor explicitly responds to the peripheral. Figure 3–2 shows the relationship 
between ipending, ienable, PIE, and the generation of an interrupt.
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A software exception routine determines which of the pending interrupts has the 
highest priority, and then transfers control to the appropriate interrupt service routine 
(ISR). The ISR stops the interrupt from being visible (either by clearing it at the source 
or masking it using ienable) before returning and/or before re-enabling PIE. The 
ISR also saves estatus and ea (r29) before re-enabling PIE. 

Interrupts can be re-enabled by writing one to the PIE bit, thereby allowing the 
current ISR to be interrupted. Typically, the exception routine adjusts ienable so that 
IRQs of equal or lower priority are disabled before re-enabling interrupts. Refer to 
“Nested Exception Precautions” on page 3–37 for more information.

Instruction-Related Exceptions
Instruction-related exceptions occur during execution of Nios II instructions and 
perform the steps outlined in “Processing Interrupt and Instruction-Related 
Exceptions” on page 3–35.

The Nios II processor generates the following instruction-related exceptions. All 
instruction-related exceptions are precise.

■ Trap instruction

■ Break instruction

Figure 3–2. Relationship Between ienable, ipending, PIE and Hardware Interrupts
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■ Unimplemented instruction

■ Illegal instruction

■ Supervisor-only instruction

■ Supervisor-only instruction address

■ Supervisor-only data address

■ Misaligned data address

■ Misaligned destination address

■ Division error

■ Fast TLB miss

■ Double TLB miss

■ TLB permission violation

■ MPU region violation

Trap Instruction
When a program issues the trap instruction, it generates a software trap exception. A 
program typically issues a software trap when the program requires servicing by the 
operating system. The general exception handler for the operating system determines 
the reason for the trap and responds appropriately.

Break Instruction
The break instruction is treated as a break exception. Refer to “Break Exceptions” on 
page 3–28 for details.

Unimplemented Instruction
When the processor issues a valid instruction that is not implemented in hardware, an 
unimplemented instruction exception is generated. The general exception handler 
determines which instruction generated the exception. If the instruction is not 
implemented in hardware, control is passed to an exception routine that might choose 
to emulate the instruction in software. Refer to “Potential Unimplemented 
Instructions” on page 3–44 for more information.

Illegal Instruction
Illegal instructions are instructions with an undefined opcode or opcode-extension 
field. The Nios II processor can check for illegal instructions and generate an 
exception when an illegal instruction is encountered. When your system contains an 
MMU or MPU, illegal instruction checking is always on. When no MMU or MPU is 
present, you have the option to have the processor check for illegal instructions.

f To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC 
Builder chapter of the Nios II Processor Reference Handbook.

When the processor issues an instruction with an undefined opcode or 
opcode-extension field, and illegal instruction exception checking is turned on, an 
illegal instruction exception is generated.
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f Refer to the OP Encodings and OPX Encodings for R-Type Instructions tables in the 
Instruction Set Reference chapter of the Nios II Processor Reference Handbook to see the 
unused opcodes and opcode extensions.

1 All undefined opcodes are reserved. The processor does occasionally use some 
undefined encodings internally. Executing one of these undefined opcodes does not 
trigger an illegal instruction exception. Refer to the Nios II Core Implementation Details 
chapter of the Nios II Processor Reference Handbook for details on each specific Nios II 
core.

Supervisor-only Instruction
When your system contains an MMU or MPU and the processor is in user mode 
(status.U = 1), executing a supervisor-only instruction results in a supervisor-only 
instruction exception. The supervisor-only instructions are initd, initi, eret, 
bret, rdctl, and wrctl.

This exception is implemented only in Nios II processors configured to use supervisor 
mode and user mode. Refer to “Operating Modes” on page 3–2 for more information.

Supervisor-only Instruction Address
When your system contains an MMU and the processor is in user mode (status.U = 
1), attempts to access a supervisor-only instruction address result in a supervisor-only 
instruction address exception. Any instruction fetch can cause this exception. For 
definitions of supervisor-only address ranges, refer to Table 3–2 on page 3–5.

This exception is implemented only in Nios II processors that include the MMU.

Supervisor-only Data Address
When your system contains an MMU and the processor is in user mode (status.U = 
1), any attempt to access a supervisor-only data address results in a supervisor-only 
data address exception. Instructions that can cause a supervisor-only data address 
exception are all loads, all stores, and flushda.

This exception is implemented only in Nios II processors that include the MMU.

Misaligned Data Address
The Nios II processor can check for misaligned data addresses of load and store 
instructions and generate an exception when a misaligned data address is 
encountered. When your system contains an MMU or MPU, misaligned data address 
checking is always on. When no MMU or MPU is present, you have the option to have 
the processor check for misaligned data addresses.

f To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC 
Builder chapter of the Nios II Processor Reference Handbook.

A data address is considered misaligned if the byte address is not a multiple of the 
width of the load or store instruction data width (four bytes for word, two bytes for 
half-word). Byte load and store instructions are always aligned so never take a 
misaligned address exception.
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Misaligned Destination Address
The Nios II processor can check for misaligned destination addresses of the callr, 
jmp, ret, eret, bret, and all branch instructions and generate an exception when a 
misaligned destination address is encountered. When your system contains an MMU 
or MPU, misaligned destination address checking is always on. When no MMU or 
MPU is present, you have the option to have the processor check for misaligned 
destination addresses.

f To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC 
Builder chapter of the Nios II Processor Reference Handbook.

A destination address is considered misaligned if the target byte address of the 
instruction is not a multiple of four.

Division Error
The Nios II processor can check for division errors and generate an exception when a 
division error is encountered.

f To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC 
Builder chapter of the Nios II Processor Reference Handbook.

The division error exception detects divide instructions that produce a quotient that 
can't be represented. The two cases are divide by zero and a signed division that 
divides the largest negative number -2147483648 (0x80000000) by -1 (0xffffffff). 
Division error detection is only available if divide instructions are supported by 
hardware.

Fast TLB Miss
Fast TLB miss exceptions are implemented only in Nios II processors that include the 
MMU. The MMU has a special exception vector (fast TLB miss), specified in SOPC 
Builder at system generation time, specifically to handle TLB miss exceptions quickly. 
Whenever the processor cannot find a TLB entry matching the VPN (optionally 
extended by a process identifier), the result is a TLB miss exception. At the time of the 
exception, the processor first checks status.EH. When status.EH = 0, no other 
exception is already in process, so the processor considers the TLB miss a fast TLB 
miss, sets status.EH to one, and transfers control to the fast TLB miss exception 
handler (rather than to the general exception handler).

There are two kinds of fast TLB miss exceptions:

■ Fast TLB miss (instruction)—Any instruction fetch can cause this exception.

■ Fast TLB miss (data)—Load, store, initda, and flushda instructions can cause 
this exception.

The fast TLB miss exception handler can inspect the tlbmisc.D field to determine 
which kind of fast TLB miss exception occurred.
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Double TLB Miss
Double TLB miss exceptions are implemented only in Nios II processors that include 
the MMU. When a TLB miss exception occurs while software is currently processing 
an exception (that is, when status.EH = 1), a double TLB miss exception is 
generated. Specifically, whenever the processor cannot find a TLB entry matching the 
VPN (optionally extended by a process identifier) and status.EH = 1, the result is a 
double TLB miss exception. The most common scenario is that a double TLB miss 
exception occurs during processing of a fast TLB miss exception. The processor 
preserves register values from the original exception and transfers control to the 
general exception handler which processes the newly-generated exception.

There are two kinds of double TLB miss exceptions:

■ Double TLB miss (instruction)—Any instruction fetch can cause this exception.

■ Double TLB miss (data)—Load, store, initda, and flushda instructions can 
cause this exception.

The general exception handler can inspect either the exception.CAUSE or 
tlbmisc.D field to determine which kind of double TLB miss exception occurred.

TLB Permission Violation
TLB permission violation exceptions are implemented only in Nios II processors that 
include the MMU. When a TLB entry is found matching the VPN (optionally 
extended by a process identifier), but the permissions do not allow the access to 
complete, a TLB permission violation exception is generated.

There are three kinds of TLB permission violation exceptions:

■ TLB permission violation (execute)—Any instruction fetch can cause this 
exception.

■ TLB permission violation (read)—Any load instruction can cause this exception. 

■ TLB permission violation (write)—Any store instruction can cause this exception.

The general exception handler can inspect the exception.CAUSE field to determine 
which permissions were violated.

1 The data cache management instructions (initd, initda, flushd, and flushda) 
ignore the TLB permissions and do not generate TLB permission violation exceptions.

MPU Region Violation
MPU region violation exceptions are implemented only in Nios II processors that 
include the MPU. An MPU region violation exception is generated under any of the 
following conditions:

■ An instruction fetch or data address matched a region but the permissions for that 
region did not allow the action to complete.

■ An instruction fetch or data address did not match any region.

The general exception handler reads the MPU region attributes to determine if the 
address did not match any region or which permissions were violated.

There are two kinds of MPU region violation exceptions:
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary



Chapter 3: Programming Model 3–35
Exception Processing
■ MPU region violation (instruction)—Any instruction fetch can cause this 
exception.

■ MPU region violation (data)—Load, store, initda, and flushda instructions can 
cause this exception.

The general exception handler can inspect the exception.CAUSE field to determine 
which kind of MPU region violation exception occurred.

Other Exceptions
The previous sections describe all of the exception types defined by the Nios II 
architecture at the time of publishing. However, some processor implementations 
might generate exceptions that do not fall into the above categories. Therefore, a 
robust exception handler must provide a safe response (such as issuing a warning) in 
the event that it cannot identify the cause of an exception.

Processing Interrupt and Instruction-Related Exceptions
Except for the break instruction (refer to “Processing a Break” on page 3–28), this 
section describes the actions the processor takes in response to interrupt and 
instruction-related exceptions. Table 3–32 lists all possible non-break exception 
processing actions performed by hardware. Check marks indicate which actions 
apply to each of the processor scenarios, namely, systems without an MMU, systems 
with an MMU, and systems with an MMU that is currently processing an exception. 
For systems with an MMU, status.EH indicates whether or not exception 
processing is already in progress. When status.EH = 1, exception processing is 
already in progress and the states of the exception registers are preserved to retain the 
original exception states.

Table 3–32. Non-Break Exception Processing Actions  (Part 1 of 2)

Processor Actions (in order of occurrence) No MMU
MMU and 

EH = 0
MMU and 

EH = 1

Copies the contents of the status control register to the estatus control 
register, saving the processor’s pre-exception status.

v v

Clears status.PIE to zero, disabling external processor interrupts. v v v

Writes the address of the instruction following the exception to the ea register 
(r29).

v v

Clears status.U to zero, forcing the processor into supervisor mode. v v

Sets status.EH to one, indicating the processor is handling an exception. v

If fast TLB miss or a TLB permission violation exception, writes the VPN of the 
address triggering the exception to pteaddr.VPN.

v

Conditionally writes to tlbmisc.D. Refer to “The D Flag” on page 3–18 for more 
information.

v

Conditionally writes to tlbmisc.DBL. Refer to “The DBL Flag” on page 3–17 for 
more information.

v v

Conditionally writes to tlbmisc.PERM. Refer to “The PERM Flag” on page 3–18 
for more information.

v v

Conditionally writes to tlbmisc.BAD. Refer to “The BAD Flag” on page 3–18 for 
more information.

v v
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary



3–36 Chapter 3: Programming Model
Exception Processing
The fast TLB miss exception handler is a routine that handles only the fast TLB miss 
execption. It is built for speed to process TLB misses quickly.

The general exception handler is a routine that determines the cause of each exception 
(including the double TLB miss exception), and then dispatches an exception routine 
to respond to the exception. The address of the general exception handler, specified in 
SOPC Builder at system generation time, is called the exception vector in the Nios II 
Megawizard interface. At run time this address is fixed, and software cannot modify 
it. Programmers do not directly access exception vectors, and can write programs 
without awareness of the address.

The fast TLB miss exception handler only handles the fast TLB miss exception. The 
fast TLB miss exception handler address, specified in SOPC Builder at system 
generation time, is called the fast TLB miss exception vector in the Nios II 
Megawizard interface.

f For a detailed discussion of writing programs to take advantage of exception and 
interrupt handling, refer to the Exception Handling chapter of the Nios II Software 
Developer’s Handbook.

Determining the Cause of Interrupt and Instruction-Related Exceptions
The general exception handler must determine the cause of each exception and then 
transfer control to an appropriate exception routine.

With Extra Exception Information
When you have included the extra exception information in your Nios II system, the 
CAUSE field of the exception register (refer to “The exception Register” on 
page 3–13) contains a code for the highest-priority exception occurring at the time and 
the BADDR field of the badaddr register (refer to “The badaddr Register” on 
page 3–18) contains the byte instruction address or data address for certain 
exceptions. Refer to Table 3–31 on page 3–26 for more information.

To determine the cause of an exception, simply read the cause of the exception from 
exception.CAUSE and then transfer control to the appropriate exception routine.

1 Extra exception information is always enabled in Nios II systems containing an MMU 
or MPU.

Passes control to the general exception vector, invoking the general exception 
handler

v v

Passes control to an exception handler:

■ If the exception is a TLB miss, control passes to the fast TLB miss exception 
vector, invoking the fast TLB miss handler.

■ If the exception is not a TLB miss, control passes to the general exception vector, 
invoking the general exception handler

v

Table 3–32. Non-Break Exception Processing Actions  (Part 2 of 2)

Processor Actions (in order of occurrence) No MMU
MMU and 

EH = 0
MMU and 

EH = 1
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Without Extra Exception Information
When you have not included the extra exception information in your Nios II system, 
your exception handler must determine the cause of exception itself. For this reason, 
Altera recommends always enabling the extra exception information.

When the extra exception information is not available, use the following sequence to 
determine the cause of an exception:

/* Check for interrupt exceptions first*/ 
if (estatus.EPIE == 1 and ipending != 0) { 

handle interrupt 
 
/* Decode exception from instruction */ 
/* Note: Because the exception register is included with the MMU and */ 
/* MPU, you never need to determine MMU or MPU exceptions by decoding */ 
} else { 

decode instruction at $ea-4 
if (instruction is trap) 

handle trap exception 
else if (instruction is load or store) 

handle misaligned data address exception 
else if (instruction is branch, bret, callr, eret, jmp, or ret) 

handle misaligned destination address exception 
else if (instruction is unimplemented) 

handle unimplemented instruction exception 
else if (instruction is illegal) 

handle illegal instruction exception 
else if (instruction is divide) { 

if (denominator == 0) 
handle division error exception 

else if (instruction is signed divide and numerator == 0x80000000 
and denominator == 0xffffffff) 

handle division error exception 
} 

} 
 

/* Not any known exception */ 
} else { 

handle unknown exception (could be spurious interrupt) 
} 

} 

Nested Exception Precautions
Exception routines must take special precautions before any of the following actions:

■ Issuing a trap instruction

■ Issuing a potentially unimplemented instruction

■ Re-enabling hardware interrupts

f For details about unimplemented instructions, refer to the Processor Architecture 
chapter of the Nios II Processor Reference Handbook.

Before allowing any of these actions, the exception routine must save estatus and 
ea (r29), then restore them properly before returning to preserve the pre-exception 
state of the exception registers. 
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Returning From Interrupt and Instruction-Related Exceptions
The eret instruction is used to resume execution at the pre-exception address. Except 
for the et register (r24), the exception routine must restore any registers modified 
during exception processing before returning. 

When executing the eret instruction, the processor performs the following tasks:

1. Copies the contents of estatus to status

2. Transfers program execution to the address in the ea register (r29)

Return Address Considerations
The return address requires some consideration when returning from exception 
processing routines. After an exception occurs, ea contains the address of the 
instruction following the point where the exception occurred.

When returning from instruction-related exceptions, execution must resume from the 
instruction following the instruction where the exception occurred. Therefore, ea 
contains the correct return address.

On the other hand, hardware interrupt exceptions must resume execution from the 
interrupted instruction itself. In this case, the exception handler must subtract 4 from 
ea to point to the interrupted instruction. 

Memory and Peripheral Access
Nios II addresses are 32 bits, allowing access up to a 4 gigabyte address space. Nios II 
core implementations without MMUs restrict addresses to 31 bits or fewer. The MMU 
supports the full 32-bit physical address.

f For details, refer to the Nios II Core Implementation Details chapter of the Nios II 
Processor Reference Handbook.

Peripherals, data memory, and program memory are mapped into the same address 
space. The locations of memory and peripherals within the address space are 
determined at system generation time. Reading or writing to an address that does not 
map to a memory or peripheral produces an undefined result.

The processor’s data bus is 32 bits wide. Instructions are available to read and write 
byte, half-word (16-bit), or word (32-bit) data. 

The Nios II architecture is little endian. For data wider than 8 bits stored in memory, 
the more-significant bits are located in higher addresses.

The Nios II architecture supports register+immediate addressing.

Cache Memory
The Nios II architecture and instruction set accommodate the presence of data cache 
and instruction cache memories. Cache management is implemented in software by 
using cache management instructions. Instructions are provided to initialize the 
cache, flush the caches whenever necessary, and to bypass the data cache to properly 
access memory-mapped peripherals. 

The Nios II architecture provides the following mechanisms to bypass the cache: 
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■ When no MMU is present, bit 31 of the address is reserved for bit-31 cache bypass. 
With bit-31 cache bypass, the address space of processor cores is 2 GBytes, and the 
high bit of the address controls the caching of data memory accesses.

■ When the MMU is present, cacheability is controlled by the MMU, and bit 31 
functions as a normal address bit. For details, refer to “Address Space and 
Memory Partitions” on page 3–4, and “TLB Organization” on page 3–6.

■ Cache bypass instructions, such as ldwio and stwio.

f Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference 
Handbook for details of which processor cores implement bit-31 cache bypass. Refer to 
Instruction Set Reference chapter of the Nios II Processor Reference Handbook for details of 
the cache bypass instructions.

Code written for a processor core with cache memory behaves correctly on a 
processor core without cache memory. The reverse is not true. If it is necessary for a 
program to work properly on multiple Nios II processor core implementations, the 
program must behave as if the instruction and data caches exist. In systems without 
cache memory, the cache management instructions perform no operation, and their 
effects are benign.

f For a complete discussion of cache management, refer to the Cache and Tightly Coupled 
Memory chapter of the Nios II Software Developer’s Handbook. 

Some consideration is necessary to ensure cache coherency after processor reset. Refer 
to “Reset Exceptions” on page 3–27 for more information.

f For details on the cache architecture and the memory hierarchy refer to the Processor 
Architecture chapter of the Nios II Processor Reference Handbook.

Virtual Address Aliasing
A virtual address alias occurs when two virtual addresses map to the same physical 
address. When an MMU and caches are present and the caches are larger than a page 
(4 KBytes), the operating system must prevent illegal virtual address aliases. Because 
the caches are virtually-indexed and physically-tagged, a portion of the virtual 
address is used to select the cache line. If the cache is 4 KBytes or less in size, the 
portion of the virtual address used to select the cache line fits with bits 11:0 of the 
virtual address which have the same value as bits 11:0 of the physical address (they 
are untranslated bits of the page offset). However, if the cache is larger than 4 KBytes, 
bits beyond the page offset (bits 12 and up) are used to select the cache line and these 
bits are allowed to be different than the corresponding physical address.

For example, in a 64 KByte direct-mapped cache with a 16-byte line, bits 15:4 are used 
to select the line. Assume that virtual address 0x1000 is mapped to physical address 
0xF000 and virtual address 0x2000 is also mapped to physical address 0xF000. 
This is an illegal virtual address alias because accesses to virtual address 0x1000 use 
line 0x1 and accesses to virtual address 0x2000 use line 0x2 even though they map to 
the same physical address. This results in two copies of the same physical address in 
the cache. With an n-byte direct-mapped cache, there could be n/4096 copies of the 
same physical address in the cache if illegal virtual address aliases are not prevented. 
The bits of the virtual address that are used to select the line and are translated bits 
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(bits 12 and up) are known as the color of the address. An operating system avoids 
illegal virtual address aliases by ensuring that if multiple virtual addresses map the 
same physical address, the virtual addresses have the same color. Note though, the 
color of the virtual addresses does not need to be the same as the color as the physical 
address because the cache tag contains all the bits of the PFN.

Instruction Set Categories
This section introduces the Nios II instructions categorized by type of operation 
performed. 

Data Transfer Instructions
The Nios II architecture is a load-store architecture. Load and store instructions 
handle all data movement between registers, memory, and peripherals. Memories and 
peripherals share a common address space. Some Nios II processor cores use memory 
caching and/or write buffering to improve memory bandwidth. The architecture 
provides instructions for both cached and uncached accesses.

Table 3–33 describes the wide (32-bit) load and store instructions.

The data transfer instructions in Table 3–34 support byte and half-word transfers. 

Table 3–33. Wide Data Transfer Instructions 

Instruction Description

ldw

stw

The ldw and stw instructions load and store 32-bit data words from/to memory. The effective address is the 
sum of a register's contents and a signed immediate value contained in the instruction. Memory transfers can 
be cached or buffered to improve program performance. This caching and buffering might cause memory 
cycles to occur out of order, and caching might suppress some cycles entirely. 

Data transfers for I/O peripherals should use ldwio and stwio.

ldwio

stwio

ldwio and stwio instructions load and store 32-bit data words from/to peripherals without caching and 
buffering. Access cycles for ldwio and stwio instructions are guaranteed to occur in instruction order and 
are never suppressed.

Table 3–34. Narrow Data Transfer Instructions 

Instruction Description

ldb 
ldbu 
stb  
ldh 
ldhu 
sth

ldb, ldbu, ldh and ldhu load a byte or half-word from memory to a register. ldb and ldh sign-extend 
the value to 32 bits, and ldbu and ldhu zero-extend the value to 32 bits. 

stb and sth store byte and half-word values, respectively.

Memory accesses can be cached or buffered to improve performance. To transfer data to I/O peripherals, 
use the “io” versions of the instructions, described below.

ldbio 
ldbuio 
stbio 
ldhio 
ldhuio 
sthio

These operations load/store byte and half-word data from/to peripherals without caching or buffering. 
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Arithmetic and Logical Instructions
Logical instructions support and, or, xor, and nor operations. Arithmetic 
instructions support addition, subtraction, multiplication, and division operations. 
Refer to Table 3–35.

Move Instructions
These instructions provide move operations to copy the value of a register or an 
immediate value to another register. Refer to Table 3–36.

Comparison Instructions
The Nios II architecture supports a number of comparison instructions. All of these 
compare two registers or a register and an immediate value, and write either one (if 
true) or zero to the result register. These instructions perform all the equality and 
relational operators of the C programming language. Refer to Table 3–37.

Table 3–35. Arithmetic and Logical Instructions 

Instruction Description

and 
or 
xor 
nor

These are the standard 32-bit logical operations. These operations take two register values and combine 
them bit-wise to form a result for a third register.

andi 
ori 
xori

These operations are immediate versions of the and, or, and xor instructions. The 16-bit immediate 
value is zero-extended to 32 bits, and then combined with a register value to form the result.

andhi 
orhi 
xorhi

In these versions of and, or, and xor, the 16-bit immediate value is shifted logically left by 16 bits to form 
a 32-bit operand. Zeroes are shifted in from the right.

add 
sub 
mul 
div 
divu

These are the standard 32-bit arithmetic operations. These operations take two registers as input and store 
the result in a third register. 

addi 
subi 
muli

These instructions are immediate versions of the add, sub, and mul instructions. The instruction word 
includes a 16-bit signed value.

mulxss 
mulxuu

These instructions provide access to the upper 32 bits of a 32x32 multiplication operation. Choose the 
appropriate instruction depending on whether the operands should be treated as signed or unsigned 
values. It is not necessary to precede these instructions with a mul.

mulxsu This instruction is used in computing a 128-bit result of a 64x64 signed multiplication. 

Table 3–36. Move Instructions 

Instruction Description

mov 
movhi 
movi 
movui 
movia

mov copies the value of one register to another register. movi moves a 16-bit signed immediate value to a 
register, and sign-extends the value to 32 bits. movui and movhi move an immediate 16-bit value into the 
lower or upper 16-bits of a register, inserting zeros in the remaining bit positions. Use movia to load a 
register with an address.
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Shift and Rotate Instructions
The following instructions provide shift and rotate operations. The number of bits to 
rotate or shift can be specified in a register or an immediate value. Refer to Table 3–38.

Program Control Instructions
The Nios II architecture supports the unconditional jump and call instructions listed 
in Table 3–39. These instructions do not have delay slots.

Table 3–37. Comparison Instructions 

Instruction Description

cmpeq == 

cmpne !=

cmpge signed >= 

cmpgeu unsigned >= 

cmpgt signed >

cmpgtu unsigned >

cmple unsigned <=

cmpleu unsigned <=

cmplt signed <

cmpltu unsigned <

cmpeqi 
cmpnei 
cmpgei 
cmpgeui 
cmpgti 
cmpgtui 
cmplei 
cmpleui 
cmplti 
cmpltui

These instructions are immediate versions of the comparison operations. 
They compare the value of a register and a 16-bit immediate value. Signed 
operations sign-extend the immediate value to 32-bits. Unsigned operations 
fill the upper bits with zero.

Table 3–38. Shift and Rotate Instructions 

Instructio
n Description

rol 
ror 
roli

The rol and roli instructions provide left bit-rotation. roli uses an immediate 
value to specify the number of bits to rotate. The ror instructions provides right 
bit-rotation. 

There is no immediate version of ror, because roli can be used to implement the 
equivalent operation.

sll 
slli 
sra 
srl 
srai 
srli

These shift instructions implement the << and >> operators of the C programming 
language. The sll, slli, srl, srli instructions provide left and right logical 
bit-shifting operations, inserting zeros. The sra and srai instructions provide 
arithmetic right bit-shifting, duplicating the sign bit in the most significant bit. slli, 
srli and srai use an immediate value to specify the number of bits to shift.
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The conditional-branch instructions compare register values directly, and branch if 
the expression is true. Refer to Table 3–40. The conditional branches support the 
equality and relational comparisons of the C programming language:

■ == and !=

■ < and <= (signed and unsigned)

■ > and >= (signed and unsigned)

The conditional-branch instructions do not have delay slots.

Other Control Instructions
Table 3–41 shows other control instructions.

Table 3–39. Unconditional Jump and Call Instructions 

Instruction Description

call This instruction calls a subroutine using an immediate value as the subroutine's absolute address, and 
stores the return address in register ra.

callr This instruction calls a subroutine at the absolute address contained in a register, and stores the return 
address in register ra. This instruction serves the roll of dereferencing a C function pointer. 

ret The ret instruction is used to return from subroutines called by call or callr. ret loads and executes 
the instruction specified by the address in register ra.

jmp The jmp instruction jumps to an absolute address contained in a register. jmp is used to implement switch 
statements of the C programming language.

jmpi The jmpi instruction jumps to an absolute address using an immediate value to determine the absolute 
address.

or This instruction branches relative to the current instruction. A signed immediate value gives the offset of the 
next instruction to execute.

Table 3–40. Conditional-Branch Instructions 

Instruction Description

bge 
bgeu 
bgt 
bgtu 
ble 
bleu 
blt 
bltu 
beq 
bne

These instructions provide relative branches that compare two register 
values and branch if the expression is true. Refer to “Comparison 
Instructions” on page 3–41 for a description of the relational operations 
implemented.
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Custom Instructions
The custom instruction provides low-level access to custom instruction logic. The 
inclusion of custom instructions is specified in SOPC Builder at system generation 
time, and the function implemented by custom instruction logic is design dependent.

f For further details, refer to the “Custom Instructions” section of the Processor 
Architecture chapter of the Nios II Processor Reference Handbook and the Nios II Custom 
Instruction User Guide.

Machine-generated C functions and assembly macros provide access to custom 
instructions, and hide implementation details from the user. Therefore, most software 
developers never use the custom assembly instruction directly. 

No-Operation Instruction
The Nios II assembler provides a no-operation instruction, nop.

Potential Unimplemented Instructions
Some Nios II processor cores do not support all instructions in hardware. In this case, 
the processor generates an exception after issuing an unimplemented instruction. 
Only the following instructions can generate an unimplemented instruction 
exception:

■ mul

■ muli

■ mulxss

Table 3–41. Other Control Instructions 

Instruction Description

trap 
eret

The trap and eret instructions generate and return from exceptions. These instructions are similar to 
the call/ret pair, but are used for exceptions. trap saves the status register in the estatus 
register, saves the return address in the ea register, and then transfers execution to the general exception 
handler. eret returns from exception processing by restoring status from estatus, and executing 
the instruction specified by the address in ea. 

break 
bret

The break and bret instructions generate and return from breaks. break and bret are used 
exclusively by software debugging tools. Programmers never use these instructions in application code. 

rdctl 
wrctl

These instructions read and write control registers, such as the status register. The value is read from 
or stored to a general-purpose register.

flushd 
flushda 
flushi 
initd 
initda 
initi

These instructions are used to manage the data and instruction cache memories. 

flushp This instruction flushes all pre-fetched instructions from the pipeline. This is necessary before jumping to 
recently-modified instruction memory.

sync This instruction ensures that all previously-issued operations have completed before allowing execution of 
subsequent load and store operations.
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■ mulxsu

■ mulxuu

■ div

■ divu

■ initda

All other instructions are guaranteed not to generate an unimplemented instruction 
exception. 

An exception routine must exercise caution if it uses these instructions, because they 
could generate another exception before the previous exception is properly handled. 
Refer to “Unimplemented Instruction” on page 3–31 for more information regarding 
unimplemented instruction processing. 

Referenced Documents
This chapter references the following documents:

■ Nios II Software Developer’s Handbook

■ Processor Architecture chapter of the Nios II Processor Reference Handbook

■ Application Binary Interface chapter of the Nios II Processor Reference Handbook

■ Instruction Set Reference chapter of the Nios II Processor Reference Handbook

■ Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor 
Reference Handbook

■ Nios II Core Implementation Details chapter of the Nios II Processor Reference 
Handbook

■ Exception Handling chapter of the Nios II Software Developer’s Handbook

■ Cache and Tightly Coupled Memory chapter of the Nios II Software Developer’s 
Handbook

■ Processor Architecture chapter of the Nios II Processor Reference Handbook

■ Nios II Custom Instruction User Guide
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